Localised Module Frames and Wannier Bases from Groupoid Morita Equivalences
Following the operator algebraic approach to Gabor analysis, we construct frames of translates for the Hilbert space localisation of the Morita equivalence bimodule arising from a groupoid equivalence between Hausdorff groupoids, where one of the groupoids is étale and with a compact unit space. For...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2021-08, Vol.27 (4), Article 69 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Following the operator algebraic approach to Gabor analysis, we construct frames of translates for the Hilbert space localisation of the Morita equivalence bimodule arising from a groupoid equivalence between Hausdorff groupoids, where one of the groupoids is étale and with a compact unit space. For finitely generated and projective submodules, we show these frames are orthonormal bases if and only if the module is free. We then apply this result to the study of localised Wannier bases of spectral subspaces of Schrödinger operators with atomic potentials supported on (aperiodic) Delone sets. The noncommutative Chern numbers provide a topological obstruction to fast-decaying Wannier bases and we show this result is stable under deformations of the underlying Delone set. |
---|---|
ISSN: | 1069-5869 1531-5851 |
DOI: | 10.1007/s00041-021-09873-8 |