The Cauchy problem for nonlocal abstract Schrödinger equations and applications
Here, the Cauchy problem for linear and nonlinear nonlocal Schrödinger equations are studied. The equation involves a convolution integral operators with a general kernel operator functions whose Fourier transform are operator functions defined in a Hilbert space H together with some growth conditio...
Gespeichert in:
Veröffentlicht in: | Analysis and mathematical physics 2021-12, Vol.11 (4), Article 147 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Analysis and mathematical physics |
container_volume | 11 |
creator | Shakhmurov, Veli B. |
description | Here, the Cauchy problem for linear and nonlinear nonlocal Schrödinger equations are studied. The equation involves a convolution integral operators with a general kernel operator functions whose Fourier transform are operator functions defined in a Hilbert space
H
together with some growth conditions. By assuming enough smoothness on the initial data and the operator functions, the local and global existence and uniqueness of solutions are established. We can obtain a different classes of nonlocal Schr ödinger equations by choosing the space
H
and linear operators, which occur in a wide variety of physical systems |
doi_str_mv | 10.1007/s13324-021-00574-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2558108024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558108024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-aaa01d115d02b350c1d9912fc6a33e9d43af0e7ec4d1f4d05a1d5af3f5e789f03</originalsourceid><addsrcrecordid>eNp9kMtKA0EQRRtRMGh-wFWD69Gq6e55LCX4goCCEdw1lX6YCZOZpHtmkR_zB_wxJ47ozlUVxb23qg5jFwhXCJBfRxQilQmkmACoXCbqiE0wy2SSCvV2_NtnxSmbxrgGAJQqk1k-Yc-LleMz6s1qz7ehXdZuw30beNM2dWuo5rSMXSDT8RezCp8ftmreXeBu11NXtU3k1FhO221dmXFwzk481dFNf-oZe727XcwekvnT_ePsZp4YgWWXEBGgRVQW0qVQYNCWJabeZCSEK60U5MHlzkiLXlpQhFaRF165vCg9iDN2OeYOV-96Fzu9bvvQDCt1qlSBUEAqB1U6qkxoYwzO622oNhT2GkEf4OkRnh7g6W94Wg0mMZriID68-xf9j-sLuAxzTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558108024</pqid></control><display><type>article</type><title>The Cauchy problem for nonlocal abstract Schrödinger equations and applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shakhmurov, Veli B.</creator><creatorcontrib>Shakhmurov, Veli B.</creatorcontrib><description>Here, the Cauchy problem for linear and nonlinear nonlocal Schrödinger equations are studied. The equation involves a convolution integral operators with a general kernel operator functions whose Fourier transform are operator functions defined in a Hilbert space
H
together with some growth conditions. By assuming enough smoothness on the initial data and the operator functions, the local and global existence and uniqueness of solutions are established. We can obtain a different classes of nonlocal Schr ödinger equations by choosing the space
H
and linear operators, which occur in a wide variety of physical systems</description><identifier>ISSN: 1664-2368</identifier><identifier>EISSN: 1664-235X</identifier><identifier>DOI: 10.1007/s13324-021-00574-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Cauchy problems ; Convolution ; Convolution integrals ; Fourier transforms ; Hilbert space ; Linear operators ; Mathematical analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Schrodinger equation ; Smoothness</subject><ispartof>Analysis and mathematical physics, 2021-12, Vol.11 (4), Article 147</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-aaa01d115d02b350c1d9912fc6a33e9d43af0e7ec4d1f4d05a1d5af3f5e789f03</citedby><cites>FETCH-LOGICAL-c319t-aaa01d115d02b350c1d9912fc6a33e9d43af0e7ec4d1f4d05a1d5af3f5e789f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13324-021-00574-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13324-021-00574-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Shakhmurov, Veli B.</creatorcontrib><title>The Cauchy problem for nonlocal abstract Schrödinger equations and applications</title><title>Analysis and mathematical physics</title><addtitle>Anal.Math.Phys</addtitle><description>Here, the Cauchy problem for linear and nonlinear nonlocal Schrödinger equations are studied. The equation involves a convolution integral operators with a general kernel operator functions whose Fourier transform are operator functions defined in a Hilbert space
H
together with some growth conditions. By assuming enough smoothness on the initial data and the operator functions, the local and global existence and uniqueness of solutions are established. We can obtain a different classes of nonlocal Schr ödinger equations by choosing the space
H
and linear operators, which occur in a wide variety of physical systems</description><subject>Analysis</subject><subject>Cauchy problems</subject><subject>Convolution</subject><subject>Convolution integrals</subject><subject>Fourier transforms</subject><subject>Hilbert space</subject><subject>Linear operators</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Schrodinger equation</subject><subject>Smoothness</subject><issn>1664-2368</issn><issn>1664-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKA0EQRRtRMGh-wFWD69Gq6e55LCX4goCCEdw1lX6YCZOZpHtmkR_zB_wxJ47ozlUVxb23qg5jFwhXCJBfRxQilQmkmACoXCbqiE0wy2SSCvV2_NtnxSmbxrgGAJQqk1k-Yc-LleMz6s1qz7ehXdZuw30beNM2dWuo5rSMXSDT8RezCp8ftmreXeBu11NXtU3k1FhO221dmXFwzk481dFNf-oZe727XcwekvnT_ePsZp4YgWWXEBGgRVQW0qVQYNCWJabeZCSEK60U5MHlzkiLXlpQhFaRF165vCg9iDN2OeYOV-96Fzu9bvvQDCt1qlSBUEAqB1U6qkxoYwzO622oNhT2GkEf4OkRnh7g6W94Wg0mMZriID68-xf9j-sLuAxzTg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Shakhmurov, Veli B.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>The Cauchy problem for nonlocal abstract Schrödinger equations and applications</title><author>Shakhmurov, Veli B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-aaa01d115d02b350c1d9912fc6a33e9d43af0e7ec4d1f4d05a1d5af3f5e789f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Cauchy problems</topic><topic>Convolution</topic><topic>Convolution integrals</topic><topic>Fourier transforms</topic><topic>Hilbert space</topic><topic>Linear operators</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Schrodinger equation</topic><topic>Smoothness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shakhmurov, Veli B.</creatorcontrib><collection>CrossRef</collection><jtitle>Analysis and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shakhmurov, Veli B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Cauchy problem for nonlocal abstract Schrödinger equations and applications</atitle><jtitle>Analysis and mathematical physics</jtitle><stitle>Anal.Math.Phys</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><artnum>147</artnum><issn>1664-2368</issn><eissn>1664-235X</eissn><abstract>Here, the Cauchy problem for linear and nonlinear nonlocal Schrödinger equations are studied. The equation involves a convolution integral operators with a general kernel operator functions whose Fourier transform are operator functions defined in a Hilbert space
H
together with some growth conditions. By assuming enough smoothness on the initial data and the operator functions, the local and global existence and uniqueness of solutions are established. We can obtain a different classes of nonlocal Schr ödinger equations by choosing the space
H
and linear operators, which occur in a wide variety of physical systems</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13324-021-00574-5</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-2368 |
ispartof | Analysis and mathematical physics, 2021-12, Vol.11 (4), Article 147 |
issn | 1664-2368 1664-235X |
language | eng |
recordid | cdi_proquest_journals_2558108024 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Cauchy problems Convolution Convolution integrals Fourier transforms Hilbert space Linear operators Mathematical analysis Mathematical Methods in Physics Mathematics Mathematics and Statistics Operators (mathematics) Schrodinger equation Smoothness |
title | The Cauchy problem for nonlocal abstract Schrödinger equations and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Cauchy%20problem%20for%20nonlocal%20abstract%20Schr%C3%B6dinger%20equations%20and%20applications&rft.jtitle=Analysis%20and%20mathematical%20physics&rft.au=Shakhmurov,%20Veli%20B.&rft.date=2021-12-01&rft.volume=11&rft.issue=4&rft.artnum=147&rft.issn=1664-2368&rft.eissn=1664-235X&rft_id=info:doi/10.1007/s13324-021-00574-5&rft_dat=%3Cproquest_cross%3E2558108024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558108024&rft_id=info:pmid/&rfr_iscdi=true |