The Cauchy problem for nonlocal abstract Schrödinger equations and applications

Here, the Cauchy problem for linear and nonlinear nonlocal Schrödinger equations are studied. The equation involves a convolution integral operators with a general kernel operator functions whose Fourier transform are operator functions defined in a Hilbert space H together with some growth conditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis and mathematical physics 2021-12, Vol.11 (4), Article 147
1. Verfasser: Shakhmurov, Veli B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Analysis and mathematical physics
container_volume 11
creator Shakhmurov, Veli B.
description Here, the Cauchy problem for linear and nonlinear nonlocal Schrödinger equations are studied. The equation involves a convolution integral operators with a general kernel operator functions whose Fourier transform are operator functions defined in a Hilbert space H together with some growth conditions. By assuming enough smoothness on the initial data and the operator functions, the local and global existence and uniqueness of solutions are established. We can obtain a different classes of nonlocal Schr ödinger equations by choosing the space H and linear operators, which occur in a wide variety of physical systems
doi_str_mv 10.1007/s13324-021-00574-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2558108024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558108024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-aaa01d115d02b350c1d9912fc6a33e9d43af0e7ec4d1f4d05a1d5af3f5e789f03</originalsourceid><addsrcrecordid>eNp9kMtKA0EQRRtRMGh-wFWD69Gq6e55LCX4goCCEdw1lX6YCZOZpHtmkR_zB_wxJ47ozlUVxb23qg5jFwhXCJBfRxQilQmkmACoXCbqiE0wy2SSCvV2_NtnxSmbxrgGAJQqk1k-Yc-LleMz6s1qz7ehXdZuw30beNM2dWuo5rSMXSDT8RezCp8ftmreXeBu11NXtU3k1FhO221dmXFwzk481dFNf-oZe727XcwekvnT_ePsZp4YgWWXEBGgRVQW0qVQYNCWJabeZCSEK60U5MHlzkiLXlpQhFaRF165vCg9iDN2OeYOV-96Fzu9bvvQDCt1qlSBUEAqB1U6qkxoYwzO622oNhT2GkEf4OkRnh7g6W94Wg0mMZriID68-xf9j-sLuAxzTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558108024</pqid></control><display><type>article</type><title>The Cauchy problem for nonlocal abstract Schrödinger equations and applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shakhmurov, Veli B.</creator><creatorcontrib>Shakhmurov, Veli B.</creatorcontrib><description>Here, the Cauchy problem for linear and nonlinear nonlocal Schrödinger equations are studied. The equation involves a convolution integral operators with a general kernel operator functions whose Fourier transform are operator functions defined in a Hilbert space H together with some growth conditions. By assuming enough smoothness on the initial data and the operator functions, the local and global existence and uniqueness of solutions are established. We can obtain a different classes of nonlocal Schr ödinger equations by choosing the space H and linear operators, which occur in a wide variety of physical systems</description><identifier>ISSN: 1664-2368</identifier><identifier>EISSN: 1664-235X</identifier><identifier>DOI: 10.1007/s13324-021-00574-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Cauchy problems ; Convolution ; Convolution integrals ; Fourier transforms ; Hilbert space ; Linear operators ; Mathematical analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Schrodinger equation ; Smoothness</subject><ispartof>Analysis and mathematical physics, 2021-12, Vol.11 (4), Article 147</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-aaa01d115d02b350c1d9912fc6a33e9d43af0e7ec4d1f4d05a1d5af3f5e789f03</citedby><cites>FETCH-LOGICAL-c319t-aaa01d115d02b350c1d9912fc6a33e9d43af0e7ec4d1f4d05a1d5af3f5e789f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13324-021-00574-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13324-021-00574-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Shakhmurov, Veli B.</creatorcontrib><title>The Cauchy problem for nonlocal abstract Schrödinger equations and applications</title><title>Analysis and mathematical physics</title><addtitle>Anal.Math.Phys</addtitle><description>Here, the Cauchy problem for linear and nonlinear nonlocal Schrödinger equations are studied. The equation involves a convolution integral operators with a general kernel operator functions whose Fourier transform are operator functions defined in a Hilbert space H together with some growth conditions. By assuming enough smoothness on the initial data and the operator functions, the local and global existence and uniqueness of solutions are established. We can obtain a different classes of nonlocal Schr ödinger equations by choosing the space H and linear operators, which occur in a wide variety of physical systems</description><subject>Analysis</subject><subject>Cauchy problems</subject><subject>Convolution</subject><subject>Convolution integrals</subject><subject>Fourier transforms</subject><subject>Hilbert space</subject><subject>Linear operators</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Schrodinger equation</subject><subject>Smoothness</subject><issn>1664-2368</issn><issn>1664-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKA0EQRRtRMGh-wFWD69Gq6e55LCX4goCCEdw1lX6YCZOZpHtmkR_zB_wxJ47ozlUVxb23qg5jFwhXCJBfRxQilQmkmACoXCbqiE0wy2SSCvV2_NtnxSmbxrgGAJQqk1k-Yc-LleMz6s1qz7ehXdZuw30beNM2dWuo5rSMXSDT8RezCp8ftmreXeBu11NXtU3k1FhO221dmXFwzk481dFNf-oZe727XcwekvnT_ePsZp4YgWWXEBGgRVQW0qVQYNCWJabeZCSEK60U5MHlzkiLXlpQhFaRF165vCg9iDN2OeYOV-96Fzu9bvvQDCt1qlSBUEAqB1U6qkxoYwzO622oNhT2GkEf4OkRnh7g6W94Wg0mMZriID68-xf9j-sLuAxzTg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Shakhmurov, Veli B.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>The Cauchy problem for nonlocal abstract Schrödinger equations and applications</title><author>Shakhmurov, Veli B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-aaa01d115d02b350c1d9912fc6a33e9d43af0e7ec4d1f4d05a1d5af3f5e789f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Cauchy problems</topic><topic>Convolution</topic><topic>Convolution integrals</topic><topic>Fourier transforms</topic><topic>Hilbert space</topic><topic>Linear operators</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Schrodinger equation</topic><topic>Smoothness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shakhmurov, Veli B.</creatorcontrib><collection>CrossRef</collection><jtitle>Analysis and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shakhmurov, Veli B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Cauchy problem for nonlocal abstract Schrödinger equations and applications</atitle><jtitle>Analysis and mathematical physics</jtitle><stitle>Anal.Math.Phys</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><artnum>147</artnum><issn>1664-2368</issn><eissn>1664-235X</eissn><abstract>Here, the Cauchy problem for linear and nonlinear nonlocal Schrödinger equations are studied. The equation involves a convolution integral operators with a general kernel operator functions whose Fourier transform are operator functions defined in a Hilbert space H together with some growth conditions. By assuming enough smoothness on the initial data and the operator functions, the local and global existence and uniqueness of solutions are established. We can obtain a different classes of nonlocal Schr ödinger equations by choosing the space H and linear operators, which occur in a wide variety of physical systems</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13324-021-00574-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 1664-2368
ispartof Analysis and mathematical physics, 2021-12, Vol.11 (4), Article 147
issn 1664-2368
1664-235X
language eng
recordid cdi_proquest_journals_2558108024
source SpringerLink Journals - AutoHoldings
subjects Analysis
Cauchy problems
Convolution
Convolution integrals
Fourier transforms
Hilbert space
Linear operators
Mathematical analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Operators (mathematics)
Schrodinger equation
Smoothness
title The Cauchy problem for nonlocal abstract Schrödinger equations and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Cauchy%20problem%20for%20nonlocal%20abstract%20Schr%C3%B6dinger%20equations%20and%20applications&rft.jtitle=Analysis%20and%20mathematical%20physics&rft.au=Shakhmurov,%20Veli%20B.&rft.date=2021-12-01&rft.volume=11&rft.issue=4&rft.artnum=147&rft.issn=1664-2368&rft.eissn=1664-235X&rft_id=info:doi/10.1007/s13324-021-00574-5&rft_dat=%3Cproquest_cross%3E2558108024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558108024&rft_id=info:pmid/&rfr_iscdi=true