The Cauchy problem for nonlocal abstract Schrödinger equations and applications

Here, the Cauchy problem for linear and nonlinear nonlocal Schrödinger equations are studied. The equation involves a convolution integral operators with a general kernel operator functions whose Fourier transform are operator functions defined in a Hilbert space H together with some growth conditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis and mathematical physics 2021-12, Vol.11 (4), Article 147
1. Verfasser: Shakhmurov, Veli B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here, the Cauchy problem for linear and nonlinear nonlocal Schrödinger equations are studied. The equation involves a convolution integral operators with a general kernel operator functions whose Fourier transform are operator functions defined in a Hilbert space H together with some growth conditions. By assuming enough smoothness on the initial data and the operator functions, the local and global existence and uniqueness of solutions are established. We can obtain a different classes of nonlocal Schr ödinger equations by choosing the space H and linear operators, which occur in a wide variety of physical systems
ISSN:1664-2368
1664-235X
DOI:10.1007/s13324-021-00574-5