Transfer learning networks with skip connections for classification of brain tumors

This article presents a transfer learning model via convolutional neural networks (CNNs) with skip connection topology, to avoid the vanishing gradient and time complexity, which are usually common in transfer learning networks. Three pretrained CNN architectures, namely AlexNet, VGG16 and GoogLeNet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology 2021-09, Vol.31 (3), p.1564-1582
Hauptverfasser: Alaraimi, Saleh, Okedu, Kenneth E., Tianfield, Hugo, Holden, Richard, Uthmani, Omair
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1582
container_issue 3
container_start_page 1564
container_title International journal of imaging systems and technology
container_volume 31
creator Alaraimi, Saleh
Okedu, Kenneth E.
Tianfield, Hugo
Holden, Richard
Uthmani, Omair
description This article presents a transfer learning model via convolutional neural networks (CNNs) with skip connection topology, to avoid the vanishing gradient and time complexity, which are usually common in transfer learning networks. Three pretrained CNN architectures, namely AlexNet, VGG16 and GoogLeNet are employed to equip with skip connections. The transfer learning is implemented through fine‐tuning and freezing the CNN architectures with skip connections based on magnetic resonance imaging (MRI) slices of brain tumor dataset. Furthermore, in the preprocessing, a frequency‐domain information enhancement technique is employed for better image clarity. Performance evaluation is conducted on the transfer learning networks with skip connections to obtain improved accuracy in brain MRI classifications.
doi_str_mv 10.1002/ima.22546
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2558034318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558034318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3326-2222ca5539f6feb01af1874fc931d550acdd3e00698a58210494e3492dbac51e3</originalsourceid><addsrcrecordid>eNp1kE1PAjEQQBujiYge_AdNPHlYmH4t2yMhiiQYD-K5Kd1WC0uL7RLCv3dxvTqHmczkzUzyELonMCIAdOx3ekSp4OUFGhCQVXFOl2gAlZSF5GJyjW5y3gAQIkAM0Psq6ZCdTbixOgUfPnGw7TGmbcZH337hvPV7bGII1rQ-hoxdTNg0OmfvvNHnGY4Or5P2AbeHXUz5Fl053WR791eH6OP5aTV7KZZv88VsuiwMY7QsaBdGC8GkK51dA9GOVBPujGSkFgK0qWtmAUpZaVFRAlxyy7ik9VobQSwboof-7j7F74PNrdrEQwrdS0WFqIBxRqqOeuwpk2LOyTq1T52ldFIE1NmZ6jr166xjxz179I09_Q-qxeu03_gBpihuBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558034318</pqid></control><display><type>article</type><title>Transfer learning networks with skip connections for classification of brain tumors</title><source>Wiley Online Library All Journals</source><creator>Alaraimi, Saleh ; Okedu, Kenneth E. ; Tianfield, Hugo ; Holden, Richard ; Uthmani, Omair</creator><creatorcontrib>Alaraimi, Saleh ; Okedu, Kenneth E. ; Tianfield, Hugo ; Holden, Richard ; Uthmani, Omair</creatorcontrib><description>This article presents a transfer learning model via convolutional neural networks (CNNs) with skip connection topology, to avoid the vanishing gradient and time complexity, which are usually common in transfer learning networks. Three pretrained CNN architectures, namely AlexNet, VGG16 and GoogLeNet are employed to equip with skip connections. The transfer learning is implemented through fine‐tuning and freezing the CNN architectures with skip connections based on magnetic resonance imaging (MRI) slices of brain tumor dataset. Furthermore, in the preprocessing, a frequency‐domain information enhancement technique is employed for better image clarity. Performance evaluation is conducted on the transfer learning networks with skip connections to obtain improved accuracy in brain MRI classifications.</description><identifier>ISSN: 0899-9457</identifier><identifier>EISSN: 1098-1098</identifier><identifier>DOI: 10.1002/ima.22546</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>AlexNet ; Artificial neural networks ; Brain ; convolutional neural network (CNN) ; deep learning ; Freezing ; GoogLeNet ; Image enhancement ; Learning ; Magnetic resonance imaging ; Performance evaluation ; Topology ; transfer learning ; Tumors ; VGG</subject><ispartof>International journal of imaging systems and technology, 2021-09, Vol.31 (3), p.1564-1582</ispartof><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3326-2222ca5539f6feb01af1874fc931d550acdd3e00698a58210494e3492dbac51e3</citedby><cites>FETCH-LOGICAL-c3326-2222ca5539f6feb01af1874fc931d550acdd3e00698a58210494e3492dbac51e3</cites><orcidid>0000-0002-9635-1029 ; 0000-0002-3695-8961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fima.22546$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fima.22546$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Alaraimi, Saleh</creatorcontrib><creatorcontrib>Okedu, Kenneth E.</creatorcontrib><creatorcontrib>Tianfield, Hugo</creatorcontrib><creatorcontrib>Holden, Richard</creatorcontrib><creatorcontrib>Uthmani, Omair</creatorcontrib><title>Transfer learning networks with skip connections for classification of brain tumors</title><title>International journal of imaging systems and technology</title><description>This article presents a transfer learning model via convolutional neural networks (CNNs) with skip connection topology, to avoid the vanishing gradient and time complexity, which are usually common in transfer learning networks. Three pretrained CNN architectures, namely AlexNet, VGG16 and GoogLeNet are employed to equip with skip connections. The transfer learning is implemented through fine‐tuning and freezing the CNN architectures with skip connections based on magnetic resonance imaging (MRI) slices of brain tumor dataset. Furthermore, in the preprocessing, a frequency‐domain information enhancement technique is employed for better image clarity. Performance evaluation is conducted on the transfer learning networks with skip connections to obtain improved accuracy in brain MRI classifications.</description><subject>AlexNet</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>convolutional neural network (CNN)</subject><subject>deep learning</subject><subject>Freezing</subject><subject>GoogLeNet</subject><subject>Image enhancement</subject><subject>Learning</subject><subject>Magnetic resonance imaging</subject><subject>Performance evaluation</subject><subject>Topology</subject><subject>transfer learning</subject><subject>Tumors</subject><subject>VGG</subject><issn>0899-9457</issn><issn>1098-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAjEQQBujiYge_AdNPHlYmH4t2yMhiiQYD-K5Kd1WC0uL7RLCv3dxvTqHmczkzUzyELonMCIAdOx3ekSp4OUFGhCQVXFOl2gAlZSF5GJyjW5y3gAQIkAM0Psq6ZCdTbixOgUfPnGw7TGmbcZH337hvPV7bGII1rQ-hoxdTNg0OmfvvNHnGY4Or5P2AbeHXUz5Fl053WR791eH6OP5aTV7KZZv88VsuiwMY7QsaBdGC8GkK51dA9GOVBPujGSkFgK0qWtmAUpZaVFRAlxyy7ik9VobQSwboof-7j7F74PNrdrEQwrdS0WFqIBxRqqOeuwpk2LOyTq1T52ldFIE1NmZ6jr166xjxz179I09_Q-qxeu03_gBpihuBQ</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Alaraimi, Saleh</creator><creator>Okedu, Kenneth E.</creator><creator>Tianfield, Hugo</creator><creator>Holden, Richard</creator><creator>Uthmani, Omair</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9635-1029</orcidid><orcidid>https://orcid.org/0000-0002-3695-8961</orcidid></search><sort><creationdate>202109</creationdate><title>Transfer learning networks with skip connections for classification of brain tumors</title><author>Alaraimi, Saleh ; Okedu, Kenneth E. ; Tianfield, Hugo ; Holden, Richard ; Uthmani, Omair</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3326-2222ca5539f6feb01af1874fc931d550acdd3e00698a58210494e3492dbac51e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>AlexNet</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>convolutional neural network (CNN)</topic><topic>deep learning</topic><topic>Freezing</topic><topic>GoogLeNet</topic><topic>Image enhancement</topic><topic>Learning</topic><topic>Magnetic resonance imaging</topic><topic>Performance evaluation</topic><topic>Topology</topic><topic>transfer learning</topic><topic>Tumors</topic><topic>VGG</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alaraimi, Saleh</creatorcontrib><creatorcontrib>Okedu, Kenneth E.</creatorcontrib><creatorcontrib>Tianfield, Hugo</creatorcontrib><creatorcontrib>Holden, Richard</creatorcontrib><creatorcontrib>Uthmani, Omair</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of imaging systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alaraimi, Saleh</au><au>Okedu, Kenneth E.</au><au>Tianfield, Hugo</au><au>Holden, Richard</au><au>Uthmani, Omair</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transfer learning networks with skip connections for classification of brain tumors</atitle><jtitle>International journal of imaging systems and technology</jtitle><date>2021-09</date><risdate>2021</risdate><volume>31</volume><issue>3</issue><spage>1564</spage><epage>1582</epage><pages>1564-1582</pages><issn>0899-9457</issn><eissn>1098-1098</eissn><abstract>This article presents a transfer learning model via convolutional neural networks (CNNs) with skip connection topology, to avoid the vanishing gradient and time complexity, which are usually common in transfer learning networks. Three pretrained CNN architectures, namely AlexNet, VGG16 and GoogLeNet are employed to equip with skip connections. The transfer learning is implemented through fine‐tuning and freezing the CNN architectures with skip connections based on magnetic resonance imaging (MRI) slices of brain tumor dataset. Furthermore, in the preprocessing, a frequency‐domain information enhancement technique is employed for better image clarity. Performance evaluation is conducted on the transfer learning networks with skip connections to obtain improved accuracy in brain MRI classifications.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/ima.22546</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9635-1029</orcidid><orcidid>https://orcid.org/0000-0002-3695-8961</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-9457
ispartof International journal of imaging systems and technology, 2021-09, Vol.31 (3), p.1564-1582
issn 0899-9457
1098-1098
language eng
recordid cdi_proquest_journals_2558034318
source Wiley Online Library All Journals
subjects AlexNet
Artificial neural networks
Brain
convolutional neural network (CNN)
deep learning
Freezing
GoogLeNet
Image enhancement
Learning
Magnetic resonance imaging
Performance evaluation
Topology
transfer learning
Tumors
VGG
title Transfer learning networks with skip connections for classification of brain tumors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A04%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transfer%20learning%20networks%20with%20skip%20connections%20for%20classification%20of%20brain%20tumors&rft.jtitle=International%20journal%20of%20imaging%20systems%20and%20technology&rft.au=Alaraimi,%20Saleh&rft.date=2021-09&rft.volume=31&rft.issue=3&rft.spage=1564&rft.epage=1582&rft.pages=1564-1582&rft.issn=0899-9457&rft.eissn=1098-1098&rft_id=info:doi/10.1002/ima.22546&rft_dat=%3Cproquest_cross%3E2558034318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558034318&rft_id=info:pmid/&rfr_iscdi=true