Transfer learning networks with skip connections for classification of brain tumors
This article presents a transfer learning model via convolutional neural networks (CNNs) with skip connection topology, to avoid the vanishing gradient and time complexity, which are usually common in transfer learning networks. Three pretrained CNN architectures, namely AlexNet, VGG16 and GoogLeNet...
Gespeichert in:
Veröffentlicht in: | International journal of imaging systems and technology 2021-09, Vol.31 (3), p.1564-1582 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents a transfer learning model via convolutional neural networks (CNNs) with skip connection topology, to avoid the vanishing gradient and time complexity, which are usually common in transfer learning networks. Three pretrained CNN architectures, namely AlexNet, VGG16 and GoogLeNet are employed to equip with skip connections. The transfer learning is implemented through fine‐tuning and freezing the CNN architectures with skip connections based on magnetic resonance imaging (MRI) slices of brain tumor dataset. Furthermore, in the preprocessing, a frequency‐domain information enhancement technique is employed for better image clarity. Performance evaluation is conducted on the transfer learning networks with skip connections to obtain improved accuracy in brain MRI classifications. |
---|---|
ISSN: | 0899-9457 1098-1098 |
DOI: | 10.1002/ima.22546 |