Three-dimensional tolerance analysis of discrete surface structures based on the torsor cluster model
Purpose The purpose of this paper is to propose a novel mathematical model to present the three-dimensional tolerance of a discrete surface and to carry out an approach to analyze the tolerance of an assembly with a discrete surface structure. A discrete surface is a special structure of a large sur...
Gespeichert in:
Veröffentlicht in: | Assembly automation 2021-08, Vol.41 (4), p.486-500 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
The purpose of this paper is to propose a novel mathematical model to present the three-dimensional tolerance of a discrete surface and to carry out an approach to analyze the tolerance of an assembly with a discrete surface structure. A discrete surface is a special structure of a large surface base with several discrete elements mounted on it, one, which is widely used in complex electromechanical products.
Design/methodology/approach
The geometric features of discrete surfaces are separated and characterized by small displacement torsors according to the spatial relationship of discrete elements. The torsor cluster model is established to characterize the integral feature variation of a discrete surface by integrating the torsor model. The influence and accumulation of the assembly tolerance of a discrete surface are determined by statistical tolerance analysis based on the unified Jacobian-Torsor method.
Findings
The effectiveness and superiority of the proposed model in comprehensive tolerance characterization of discrete surfaces are successfully demonstrated by a case study of a phased array antenna. The tolerance is evidently and intuitively computed and expressed based on the torsor cluster model.
Research limitations/implications
The tolerance analysis method proposed requires much time and high computing performance for the calculation of the statistical simulation.
Practical implications
The torsor cluster model achieves the three-dimensional tolerance representation of the discrete surface. The tolerance analysis method based on this model predicts the accumulation of the tolerance of components before their physical assembly.
Originality/value
This paper proposes the torsor cluster as a novel mathematical model to interpret the tolerance of a discrete surface. |
---|---|
ISSN: | 0144-5154 2754-6969 1758-4078 2754-6977 |
DOI: | 10.1108/AA-11-2019-0205 |