Reduction Methodology for Fluctuation Driven Population Dynamics
Lorentzian distributions have been largely employed in statistical mechanics to obtain exact results for heterogeneous systems. Analytic continuation of these results is impossible even for slightly deformed Lorentzian distributions due to the divergence of all the moments (cumulants). We have solve...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2021-07, Vol.127 (3), p.1-038301, Article 038301 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lorentzian distributions have been largely employed in statistical mechanics to obtain exact results for heterogeneous systems. Analytic continuation of these results is impossible even for slightly deformed Lorentzian distributions due to the divergence of all the moments (cumulants). We have solved this problem by introducing a "pseudocumulants" expansion. This allows us to develop a reduction methodology for heterogeneous spiking neural networks subject to extrinsic and endogenous fluctuations, thus obtaining a unified mean-field formulation encompassing quenched and dynamical sources of disorder. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.127.038301 |