Endpoint estimates for commutators of Riesz transforms related to Schrödinger operators

We consider the Schrödinger operator L = - Δ + V on R n , where n ≥ 3 and the nonnegative potential V belongs to reverse Hölder class R H s for s > n 2 . In this paper, we discuss the boundedness of Riesz transform T α , β = V α L - β and its commutator at the endpoint. We show that T α , β is bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of pure and applied mathematics 2021-06, Vol.52 (2), p.449-458
Hauptverfasser: Wang, Yanhui, Wang, Yueshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Schrödinger operator L = - Δ + V on R n , where n ≥ 3 and the nonnegative potential V belongs to reverse Hölder class R H s for s > n 2 . In this paper, we discuss the boundedness of Riesz transform T α , β = V α L - β and its commutator at the endpoint. We show that T α , β is bounded from L 1 ( R n ) into L p 0 ( R n ) , and prove that [ b , T α , β ] is bounded from H L 1 ( R n ) (Hardy space related to L ) into L p 0 ( R n ) , where p 0 = n n - 2 ( β - α ) and b belongs to the BMO type space introduced by Bongioanni, Harboure and Salinas.
ISSN:0019-5588
0975-7465
DOI:10.1007/s13226-021-00081-0