Endpoint estimates for commutators of Riesz transforms related to Schrödinger operators
We consider the Schrödinger operator L = - Δ + V on R n , where n ≥ 3 and the nonnegative potential V belongs to reverse Hölder class R H s for s > n 2 . In this paper, we discuss the boundedness of Riesz transform T α , β = V α L - β and its commutator at the endpoint. We show that T α , β is bo...
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2021-06, Vol.52 (2), p.449-458 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the Schrödinger operator
L
=
-
Δ
+
V
on
R
n
,
where
n
≥
3
and the nonnegative potential
V
belongs to reverse Hölder class
R
H
s
for
s
>
n
2
.
In this paper, we discuss the boundedness of Riesz transform
T
α
,
β
=
V
α
L
-
β
and its commutator at the endpoint. We show that
T
α
,
β
is bounded from
L
1
(
R
n
)
into
L
p
0
(
R
n
)
,
and prove that
[
b
,
T
α
,
β
]
is bounded from
H
L
1
(
R
n
)
(Hardy space related to
L
) into
L
p
0
(
R
n
)
,
where
p
0
=
n
n
-
2
(
β
-
α
)
and
b
belongs to the BMO type space introduced by Bongioanni, Harboure and Salinas. |
---|---|
ISSN: | 0019-5588 0975-7465 |
DOI: | 10.1007/s13226-021-00081-0 |