Planar graphs with the maximum number of induced 4-cycles or 5-cycles
For large \(n\) we determine exactly the maximum numbers of induced \(C_4\) and \(C_5\) subgraphs that a planar graph on \(n\) vertices can contain. We show that \(K_{2,n-2}\) uniquely achieves this maximum in the \(C_4\) case, and we identify the graphs which achieve the maximum in the \(C_5\) case...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-09 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For large \(n\) we determine exactly the maximum numbers of induced \(C_4\) and \(C_5\) subgraphs that a planar graph on \(n\) vertices can contain. We show that \(K_{2,n-2}\) uniquely achieves this maximum in the \(C_4\) case, and we identify the graphs which achieve the maximum in the \(C_5\) case. This extends work in a paper by Hakimi and Schmeichel and a paper by Ghosh, Győri, Janzer, Paulos, Salia, and Zamora which together determine both maxima asymptotically. |
---|---|
ISSN: | 2331-8422 |