Microstructure and Texture Evolution During Cold Rolling of 316L Stainless Steel

The evolution of the deformation microstructure and the local crystallographic orientations are investigated for 10, 30, 50, and 80 pct cold rolled 316L austenitic stainless steel strips and the results are related to the overall macro-texture evolution. The microstructures are characterized by scan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2021-09, Vol.52 (9), p.4100-4111
Hauptverfasser: Zhang, Chunlei, Juul Jensen, Dorte, Yu, Tianbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The evolution of the deformation microstructure and the local crystallographic orientations are investigated for 10, 30, 50, and 80 pct cold rolled 316L austenitic stainless steel strips and the results are related to the overall macro-texture evolution. The microstructures are characterized by scanning electron microscopy (SEM), including electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The macro-textures are characterized by X-ray diffraction (XRD) measurements. It is found that the deformation leads to both slip and twinning followed by martensite transformation and shear banding. The deformation twinning occurs on planes with the highest twinning Schmid factors and shows a strong orientation dependence, in the sense deformation twinning occurs preferentially in grains with near Copper orientation rather than Brass orientation. It is furthermore found that the formation of both deformation twins and shear bands have a significant effect on the texture evolution. The correlations between microstructure, local crystallographic orientations and macro-textures are discussed.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-021-06367-6