Dynamic characteristics analysis of agitator design for soy sauce cooking process

Soy sauce is one type of dark brown condiment, distinctive smell, salty or sweet taste, lumpy, and contains protein produced from fermented. One of the machines that can be used for cooking soy sauce is a pressure vessel as cooking pan with an agitator. Agitation is a process of mixing and stirring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2019-04, Vol.251 (1), p.12038
Hauptverfasser: Haryanto, A, Budiwantoro, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soy sauce is one type of dark brown condiment, distinctive smell, salty or sweet taste, lumpy, and contains protein produced from fermented. One of the machines that can be used for cooking soy sauce is a pressure vessel as cooking pan with an agitator. Agitation is a process of mixing and stirring and are carried out by heat transfer and mass inter-phases or with external surfaces (due to outside influences). The agitator is a system used for mixing and stirring accompanied by a phase change. In the design of rotating machinery, it is necessary to predict the dynamic characteristic in bending and in torsion to avoid failure. Dynamic characteristics analysis of agitator design for soy sauce cooking process consists of mechanical vibration analysis and mass unbalance response. The stiffness method for the agitator shaft by dividing the shaft element into two elements based on the bearing position. The bearing is assumed to be roller supports and only moves in the direction of translation and rotation. Based on the dynamic characteristics of rotordynamics prediction by using finite element method both theoretical and software, the agitator in operating conditions with the rotation speed of 5 RPM according to Campbell diagram will not fail. The highest amplitude of the mass unbalance response is less than 2.5×10−2 mm.
ISSN:1755-1307
1755-1315
1755-1315
DOI:10.1088/1755-1315/251/1/012038