Thermal performance of waste materials as aggregate replacement in asphalt pavement

The high surface temperature of the conventional asphalt pavement due to high solar energy absorption could contribute to the Urban Heat Island (UHI) phenomenon. Concurrent with this phenomenon, rapid urbanization and industrial development have led to a large quantity of waste products available fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2019-01, Vol.220 (1), p.12011
Hauptverfasser: Ridha Oleiwi Aletba, Salam, Abdul Hassan, Norhidayah, Aminudin, Eeydzah, Putra Jaya, Ramadhansyah, Athma Mohd Shukry, Nurul, Mashros, Nordiana, Aziz, Md Maniruzzaman A., Md. Nor, Hasanan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The high surface temperature of the conventional asphalt pavement due to high solar energy absorption could contribute to the Urban Heat Island (UHI) phenomenon. Concurrent with this phenomenon, rapid urbanization and industrial development have led to a large quantity of waste products available for disposal or recycling. Therefore, this study investigates the thermal performance of selected waste materials that could potentially be used as aggregate in asphalt pavement to combat the problem of increased pavement surface temperature. A number of waste materials were selected for the thermal performance measurement and compared to granite as conventional aggregate. The cylindrical and slab samples of AC14 dense graded asphalt were prepared for the different selected aggregate types. The samples were then measured for solar reflectance using Spectroradiometer. In addition, the surface and internal temperature profiles of the samples were monitored using infrared camera and thermocouples, respectively, in exposed environments. Based on the results, it is possible to use some of the waste materials as an aggregate replacement in order to reduce the UHI impact.
ISSN:1755-1307
1755-1315
1755-1315
DOI:10.1088/1755-1315/220/1/012011