The sigma chromatic number of the Sierpiński gasket graphs and the Hanoi graphs

A vertex coloring c : V(G) → ℕ of a non-trivial connected graph G is called a sigma coloring if σ(u) ≠ σ(v) for any pair of adjacent vertices u and v. Here, σ(x) denotes the sum of the colors assigned to vertices adjacent to x. The sigma chromatic number of G, denoted by σ(G), is defined as the fewe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2020-05, Vol.1538 (1), p.12002
Hauptverfasser: Garciano, A D, Marcelo, R M, Ruiz, M J P, Tolentino, M A C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A vertex coloring c : V(G) → ℕ of a non-trivial connected graph G is called a sigma coloring if σ(u) ≠ σ(v) for any pair of adjacent vertices u and v. Here, σ(x) denotes the sum of the colors assigned to vertices adjacent to x. The sigma chromatic number of G, denoted by σ(G), is defined as the fewest number of colors needed to construct a sigma coloring of G. In this paper, we determine the sigma chromatic numbers of the Sierpiński gasket graphs and the Hanoi graphs. Moreover, we prove the uniqueness of the sigma coloring for Sierpiński gasket graphs.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1538/1/012002