The sigma chromatic number of the Sierpiński gasket graphs and the Hanoi graphs
A vertex coloring c : V(G) → ℕ of a non-trivial connected graph G is called a sigma coloring if σ(u) ≠ σ(v) for any pair of adjacent vertices u and v. Here, σ(x) denotes the sum of the colors assigned to vertices adjacent to x. The sigma chromatic number of G, denoted by σ(G), is defined as the fewe...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2020-05, Vol.1538 (1), p.12002 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A vertex coloring c : V(G) → ℕ of a non-trivial connected graph G is called a sigma coloring if σ(u) ≠ σ(v) for any pair of adjacent vertices u and v. Here, σ(x) denotes the sum of the colors assigned to vertices adjacent to x. The sigma chromatic number of G, denoted by σ(G), is defined as the fewest number of colors needed to construct a sigma coloring of G. In this paper, we determine the sigma chromatic numbers of the Sierpiński gasket graphs and the Hanoi graphs. Moreover, we prove the uniqueness of the sigma coloring for Sierpiński gasket graphs. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/1538/1/012002 |