Golgi α-mannosidase II mediates the formation of vascular smooth muscle foam cells under inflammatory stress
Introduction. Vascular smooth muscle cells (VSMCs)-based foam cell formation is a crucial factor in the atherosclerosis process. We aimed to explore the mechanism of Golgi a-mannosidase II (GMII) effects on the VSMCs-based foam cell formation. Material and methods. VSMCs were exposed to different co...
Gespeichert in:
Veröffentlicht in: | Folia histochemica et cytobiologica 2021-01, Vol.59 (2), p.134-143 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introduction. Vascular smooth muscle cells (VSMCs)-based foam cell formation is a crucial factor in the atherosclerosis process. We aimed to explore the mechanism of Golgi a-mannosidase II (GMII) effects on the VSMCs-based foam cell formation. Material and methods. VSMCs were exposed to different concentrations of low-density lipoproteins (LDLs), lipopolysaccharide (LPS), and/or GMII inhibitor (swainsonine). The qRT-PCR and western blot were used for expression analysis. Oil Red O staining was used to verify changes of lipid droplets in VSMCs. The translocation of the SCAP from the endoplasmic reticulum (ER) to Golgi was detected by immunofluorescence (IF). Results. LPS disrupted the LDLs-mediated regulation of LDL receptor (LDLr) and increased intracellular cholesterol ester, which was inversely inhibited by swainsonine. The activity of a-mannosidase II and GMII expression were decreased by LDLs but increased by the addition of LPS. Conversely, LPS-induced enhancement was reversed by swainsonine. Additionally, swainsonine reversed the LPS-induced increase of intracellular lipid droplets in the presence of LDLs. Expression analysis demonstrated that LDLr, SCAP, and SREBP2 were up-regulated by LPS, but reversed by swainsonine in LDLs-treated cells. IF staining revealed that swainsonine inhibited the translocation of SCAP to Golgi under inflammatory stress. Conclusions. Collectively, swainsonine restrained LDLr expression to suppress the formation of VSMCs-based foam cells by reducing SREBP2 and SCAP under inflammatory stress conditions, suggesting that GMII contributes to the formation of VSMCs-based foam cells under inflammatory stress. |
---|---|
ISSN: | 0239-8508 1897-5631 |
DOI: | 10.5603/FHCa.2021.0015 |