Arabic digit recognition using robust deep convolution neural network

Recently, digit recognition becomes one of interest problems for many researchers. However, Arabic digits have lack for such research. In this work, we used a robust deep convolution neural network (DCNN) to evaluate our collected Arabic digit dataset. We introduce substantial changes to CNN models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2020-05, Vol.1530 (1), p.12085
Hauptverfasser: Mahdi Haref, Qasim, Srayyih Al-Maliki, Mohsin N., Mohammed Tuaama, Maytham, Albehadili, Hayder M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, digit recognition becomes one of interest problems for many researchers. However, Arabic digits have lack for such research. In this work, we used a robust deep convolution neural network (DCNN) to evaluate our collected Arabic digit dataset. We introduce substantial changes to CNN models to achieve superior results to prior work. Extensive experimental results are contacted to show the robustness of proposed models. Our detector achieves best current state-of-the-art results.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1530/1/012085