Construction of Ternary Bent Functions by FFT-Like Permutation Algorithms
Binary bent functions have a strictly specified number of non-zero values. In the same way, ternary bent functions satisfy certain requirements on the elements of their value vectors. These requirements can be used to specify six classes of ternary bent functions. Classes are mutually related by enc...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2021/08/01, Vol.E104.D(8), pp.1092-1102 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Binary bent functions have a strictly specified number of non-zero values. In the same way, ternary bent functions satisfy certain requirements on the elements of their value vectors. These requirements can be used to specify six classes of ternary bent functions. Classes are mutually related by encoding of function values. Given a basic ternary bent function, other functions in the same class can be constructed by permutation matrices having a block structure similar to that of the factor matrices appearing in the Good-Thomas decomposition of Cooley-Tukey Fast Fourier transform and related algorithms. |
---|---|
ISSN: | 0916-8532 1745-1361 |
DOI: | 10.1587/transinf.2020LOP0006 |