Counting the number of vertexes labeled connected graphs of order five with minimum five edges and maximum ten parallel edges
If given a graph G(V,E) with n vertices and m edges many graphs can be constructed. The graphs constructed maybe connected graphs (there exists at least one path connecting every pair of vertices in the graph) or disconnected; either simple a (contains loop or parallel edges) or not simple. In, this...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2020-04, Vol.1524 (1), p.12047 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If given a graph G(V,E) with n vertices and m edges many graphs can be constructed. The graphs constructed maybe connected graphs (there exists at least one path connecting every pair of vertices in the graph) or disconnected; either simple a (contains loop or parallel edges) or not simple. In, this paper we will discuss the formula for counting the number of connected vertex labelled graph of order five (n=5) without loops, witof h minimum five edges and maa y contaiof n maximum ten parallel edges. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/1524/1/012047 |