An Efficient Technique for Virtual Machine Clustering and Communications Using Task-Based Scheduling in Cloud Computing
Cloud computing models use virtual machine (VM) clusters for protecting resources from failure with backup capability. Cloud user tasks are scheduled by selecting suitable resources for executing the task in the VM cluster. Existing VM clustering processes suffer from issues like preconfiguration, d...
Gespeichert in:
Veröffentlicht in: | Scientific programming 2021-07, Vol.2021, p.1-15 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cloud computing models use virtual machine (VM) clusters for protecting resources from failure with backup capability. Cloud user tasks are scheduled by selecting suitable resources for executing the task in the VM cluster. Existing VM clustering processes suffer from issues like preconfiguration, downtime, complex backup process, and disaster management. VM infrastructure provides the high availability resources with dynamic and on-demand configuration. The proposed methodology supports VM clustering process to place and allocate VM based on the requesting task size with bandwidth level to enhance the efficiency and availability. The proposed clustering process is classified as preclustering and postclustering based on the migration. Task and bandwidth classification process classifies tasks with adequate bandwidth for execution in a VM cluster. The mapping of bandwidth to VM is done based on the availability of the VM in the cluster. The VM clustering process uses different performance parameters like lifetime of VM, utilization of VM, bucket size, and task execution time. The main objective of the proposed VM clustering is that it maps the task with suitable VM with bandwidth for achieving high availability and reliability. It reduces task execution and allocated time when compared to existing algorithms. |
---|---|
ISSN: | 1058-9244 1875-919X |
DOI: | 10.1155/2021/5586521 |