A Heterogeneous Ensemble Learning Model Based on Data Distribution for Credit Card Fraud Detection
Credit card fraud detection (CCFD) is important for protecting the cardholder’s property and the reputation of banks. Class imbalance in credit card transaction data is a primary factor affecting the classification performance of current detection models. However, prior approaches are aimed at impro...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2021, Vol.2021 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Credit card fraud detection (CCFD) is important for protecting the cardholder’s property and the reputation of banks. Class imbalance in credit card transaction data is a primary factor affecting the classification performance of current detection models. However, prior approaches are aimed at improving the prediction accuracy of the minority class samples (fraudulent transactions), but this usually leads to a significant drop in the model’s predictive performance for the majority class samples (legal transactions), which greatly increases the investigation cost for banks. In this paper, we propose a heterogeneous ensemble learning model based on data distribution (HELMDD) to deal with imbalanced data in CCFD. We validate the effectiveness of HELMDD on two real credit card datasets. The experimental results demonstrate that compared with current state-of-the-art models, HELMDD has the best comprehensive performance. HELMDD not only achieves good recall rates for both the minority class and the majority class but also increases the savings rate for banks to 0.8623 and 0.6696, respectively. |
---|---|
ISSN: | 1530-8669 1530-8677 |
DOI: | 10.1155/2021/2531210 |