Gradient Estimate and Liouville Theorems for p-Harmonic Maps

In this paper, we first obtain an L q gradient estimate for p -harmonic maps, by assuming the target manifold supporting a certain function, whose gradient and Hessian satisfy some analysis conditions. From this L q gradient estimate, we get a corresponding Liouville type result for p -harmonic maps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2021-08, Vol.31 (8), p.8318-8333
Hauptverfasser: Dong, Yuxin, Lin, Hezi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we first obtain an L q gradient estimate for p -harmonic maps, by assuming the target manifold supporting a certain function, whose gradient and Hessian satisfy some analysis conditions. From this L q gradient estimate, we get a corresponding Liouville type result for p -harmonic maps. Secondly, using these general results, we give various geometric applications to p -harmonic maps from complete manifolds with nonnegative Ricci curvature to manifolds with various upper bound on sectional curvature, under appropriate controlled images.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-020-00594-w