Gradient Estimate and Liouville Theorems for p-Harmonic Maps
In this paper, we first obtain an L q gradient estimate for p -harmonic maps, by assuming the target manifold supporting a certain function, whose gradient and Hessian satisfy some analysis conditions. From this L q gradient estimate, we get a corresponding Liouville type result for p -harmonic maps...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2021-08, Vol.31 (8), p.8318-8333 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we first obtain an
L
q
gradient estimate for
p
-harmonic maps, by assuming the target manifold supporting a certain function, whose gradient and Hessian satisfy some analysis conditions. From this
L
q
gradient estimate, we get a corresponding Liouville type result for
p
-harmonic maps. Secondly, using these general results, we give various geometric applications to
p
-harmonic maps from complete manifolds with nonnegative Ricci curvature to manifolds with various upper bound on sectional curvature, under appropriate controlled images. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-020-00594-w |