STDNet: A CNN-based approach to single-/mixed-script detection
Script identification serves as a guide to the detection of the text of the scene through optical character recognition (OCR). But this is not a principal concern for the OCR engine. Until script identification, it is important to identify the script-type because today the text of the scene in natur...
Gespeichert in:
Veröffentlicht in: | Innovations in systems and software engineering 2021-09, Vol.17 (3), p.277-288 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Script identification serves as a guide to the detection of the text of the scene through optical character recognition (OCR). But this is not a principal concern for the OCR engine. Until script identification, it is important to identify the script-type because today the text of the scene in natural images does not consist only of a single script, rather mixed-script words at character level are very often encountered. These words are also used in various ways, such as signboards, t-shirt graffiti, hoardings, and banners and often written in artistic way. In this work, a CNN-based deep learning framework, named as STDNet: Script-Type detection Network, was developed to detect single-/mixed-script images. To determine the feasibility of the system presented, tests were also undertaken with an outlier which is composed of a wide range of single scripts. Experiments were performed with over 20K images and 99.53% highest accuracy was reached. This approach was compared to a state-of-the-art deep learning techniques and handcrafted feature-based methodologies where the proposed approach obtained a better performance. |
---|---|
ISSN: | 1614-5046 1614-5054 |
DOI: | 10.1007/s11334-021-00395-6 |