Growth of ZnO thin films at low temperature by plasma-enhanced atomic layer deposition using H2O and O2 plasma oxidants
Zinc oxide (ZnO) thin films were grown at 70 °C by plasma-enhanced atomic layer deposition using H 2 O and O 2 plasmas. Plasma oxidants were used in order to improve the ZnO crystallinity and optoelectronic properties, avoiding high-temperature synthesis. The deposition parameters were optimized to...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2021-08, Vol.32 (15), p.20274-20283 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20283 |
---|---|
container_issue | 15 |
container_start_page | 20274 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 32 |
creator | Castillo-Saenz, J. R. Nedev, N. Valdez-Salas, B. Martinez-Puente, M. A. Aguirre-Tostado, F. S. Mendivil-Palma, M. I. Mateos, D. Curiel-Alvarez, M. A. Perez-Landeros, O. Martinez-Guerra, E. |
description | Zinc oxide (ZnO) thin films were grown at 70 °C by plasma-enhanced atomic layer deposition using H
2
O and O
2
plasmas. Plasma oxidants were used in order to improve the ZnO crystallinity and optoelectronic properties, avoiding high-temperature synthesis. The deposition parameters were optimized to achieve saturation in each reaction step. X-ray photoelectron spectroscopy (XPS) reveals high purity of the obtained ZnO films. X-ray diffraction (XRD) measurements indicate that the grown layers are polycrystalline and that the H
2
O plasma synthesis leads to better crystallinity than the O
2
plasma as inferred from the intensity of the (100) and (002) peaks. The films are with high optical transmission, ~90%, as inferred from UV–visible (UV–Vis) transmittance measurements, and optical band gaps of 3.22 and 3.23 eV for H
2
O and O
2
plasma, respectively. Atomic force microscopy (AFM) indicates that the films are smooth, with an average roughness of ~ 0.22 nm. The growth rate was found to be in the range of 1.2–1.4 Å/cycle. The XPS, XRD, UV–Vis, and AFM results prove the possibility to obtain high-quality ZnO films by O
2
and H
2
O plasma processes at 70 °C with chemical, structural, and optical properties promising for flexible electronics. ZnO films were successfully deposited on polyethylene terephthalate substrates using the optimal conditions for H
2
O plasma process. No damage of the film surface or substrate was observed. |
doi_str_mv | 10.1007/s10854-021-06533-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2556905151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556905151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234x-40389bde90b91c260eb01edec9220cf394a30b4671073e17c4179451b57821c93</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4MoOKdfwFPAc_TNv7Y5ylAnDHZREC8hTdOto01q0rHt21vdwJun9_I8vxcehG4p3FOA_CFRKKQgwCiBTHJO9mdoQmXOiSjYxzmagJI5EZKxS3SV0gYAMsGLCdq9xLAb1jjU-NMv8bBuPK6btkvYDLgNOzy4rnfRDNvocHnAfWtSZ4jza-Otq0YqdI3FrTm4iCvXh9QMTfB4mxq_wnO2xMZXeMlOIg77pjJ-SNfoojZtcjenO0Xvz09vszlZLF9eZ48LYhkXeyKAF6qsnIJSUcsycCVQVzmrGANbcyUMh1JkOYWcO5pbQXMlJC1lXjBqFZ-iu-NuH8PX1qVBb8I2-vGlZlJmCiSVdKTYkbIxpBRdrfvYdCYeNAX9E1gfA-sxsP4NrPejxI9SGmG_cvFv-h_rG8Bsfm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556905151</pqid></control><display><type>article</type><title>Growth of ZnO thin films at low temperature by plasma-enhanced atomic layer deposition using H2O and O2 plasma oxidants</title><source>Springer Nature - Complete Springer Journals</source><creator>Castillo-Saenz, J. R. ; Nedev, N. ; Valdez-Salas, B. ; Martinez-Puente, M. A. ; Aguirre-Tostado, F. S. ; Mendivil-Palma, M. I. ; Mateos, D. ; Curiel-Alvarez, M. A. ; Perez-Landeros, O. ; Martinez-Guerra, E.</creator><creatorcontrib>Castillo-Saenz, J. R. ; Nedev, N. ; Valdez-Salas, B. ; Martinez-Puente, M. A. ; Aguirre-Tostado, F. S. ; Mendivil-Palma, M. I. ; Mateos, D. ; Curiel-Alvarez, M. A. ; Perez-Landeros, O. ; Martinez-Guerra, E.</creatorcontrib><description>Zinc oxide (ZnO) thin films were grown at 70 °C by plasma-enhanced atomic layer deposition using H
2
O and O
2
plasmas. Plasma oxidants were used in order to improve the ZnO crystallinity and optoelectronic properties, avoiding high-temperature synthesis. The deposition parameters were optimized to achieve saturation in each reaction step. X-ray photoelectron spectroscopy (XPS) reveals high purity of the obtained ZnO films. X-ray diffraction (XRD) measurements indicate that the grown layers are polycrystalline and that the H
2
O plasma synthesis leads to better crystallinity than the O
2
plasma as inferred from the intensity of the (100) and (002) peaks. The films are with high optical transmission, ~90%, as inferred from UV–visible (UV–Vis) transmittance measurements, and optical band gaps of 3.22 and 3.23 eV for H
2
O and O
2
plasma, respectively. Atomic force microscopy (AFM) indicates that the films are smooth, with an average roughness of ~ 0.22 nm. The growth rate was found to be in the range of 1.2–1.4 Å/cycle. The XPS, XRD, UV–Vis, and AFM results prove the possibility to obtain high-quality ZnO films by O
2
and H
2
O plasma processes at 70 °C with chemical, structural, and optical properties promising for flexible electronics. ZnO films were successfully deposited on polyethylene terephthalate substrates using the optimal conditions for H
2
O plasma process. No damage of the film surface or substrate was observed.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-06533-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Atomic force microscopy ; Atomic layer epitaxy ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal structure ; Crystallinity ; Flexible components ; High temperature ; Low temperature ; Materials Science ; Optical and Electronic Materials ; Optical properties ; Optoelectronics ; Oxidizing agents ; Oxygen plasma ; Photoelectrons ; Plasma ; Plasmas (physics) ; Polyethylene terephthalate ; Substrates ; Thin films ; X ray photoelectron spectroscopy ; X-ray diffraction ; Zinc oxide ; Zinc oxides</subject><ispartof>Journal of materials science. Materials in electronics, 2021-08, Vol.32 (15), p.20274-20283</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c234x-40389bde90b91c260eb01edec9220cf394a30b4671073e17c4179451b57821c93</citedby><cites>FETCH-LOGICAL-c234x-40389bde90b91c260eb01edec9220cf394a30b4671073e17c4179451b57821c93</cites><orcidid>0000-0003-4078-2521 ; 0000-0001-8818-4307 ; 0000-0002-2308-1259 ; 0000-0003-3391-010X ; 0000-0003-0877-2198 ; 0000-0001-9027-8820 ; 0000-0002-5316-0329 ; 0000-0002-8721-0179 ; 0000-0002-4141-1020 ; 0000-0002-6788-7545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-06533-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-06533-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Castillo-Saenz, J. R.</creatorcontrib><creatorcontrib>Nedev, N.</creatorcontrib><creatorcontrib>Valdez-Salas, B.</creatorcontrib><creatorcontrib>Martinez-Puente, M. A.</creatorcontrib><creatorcontrib>Aguirre-Tostado, F. S.</creatorcontrib><creatorcontrib>Mendivil-Palma, M. I.</creatorcontrib><creatorcontrib>Mateos, D.</creatorcontrib><creatorcontrib>Curiel-Alvarez, M. A.</creatorcontrib><creatorcontrib>Perez-Landeros, O.</creatorcontrib><creatorcontrib>Martinez-Guerra, E.</creatorcontrib><title>Growth of ZnO thin films at low temperature by plasma-enhanced atomic layer deposition using H2O and O2 plasma oxidants</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Zinc oxide (ZnO) thin films were grown at 70 °C by plasma-enhanced atomic layer deposition using H
2
O and O
2
plasmas. Plasma oxidants were used in order to improve the ZnO crystallinity and optoelectronic properties, avoiding high-temperature synthesis. The deposition parameters were optimized to achieve saturation in each reaction step. X-ray photoelectron spectroscopy (XPS) reveals high purity of the obtained ZnO films. X-ray diffraction (XRD) measurements indicate that the grown layers are polycrystalline and that the H
2
O plasma synthesis leads to better crystallinity than the O
2
plasma as inferred from the intensity of the (100) and (002) peaks. The films are with high optical transmission, ~90%, as inferred from UV–visible (UV–Vis) transmittance measurements, and optical band gaps of 3.22 and 3.23 eV for H
2
O and O
2
plasma, respectively. Atomic force microscopy (AFM) indicates that the films are smooth, with an average roughness of ~ 0.22 nm. The growth rate was found to be in the range of 1.2–1.4 Å/cycle. The XPS, XRD, UV–Vis, and AFM results prove the possibility to obtain high-quality ZnO films by O
2
and H
2
O plasma processes at 70 °C with chemical, structural, and optical properties promising for flexible electronics. ZnO films were successfully deposited on polyethylene terephthalate substrates using the optimal conditions for H
2
O plasma process. No damage of the film surface or substrate was observed.</description><subject>Atomic force microscopy</subject><subject>Atomic layer epitaxy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Flexible components</subject><subject>High temperature</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Optoelectronics</subject><subject>Oxidizing agents</subject><subject>Oxygen plasma</subject><subject>Photoelectrons</subject><subject>Plasma</subject><subject>Plasmas (physics)</subject><subject>Polyethylene terephthalate</subject><subject>Substrates</subject><subject>Thin films</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LwzAYh4MoOKdfwFPAc_TNv7Y5ylAnDHZREC8hTdOto01q0rHt21vdwJun9_I8vxcehG4p3FOA_CFRKKQgwCiBTHJO9mdoQmXOiSjYxzmagJI5EZKxS3SV0gYAMsGLCdq9xLAb1jjU-NMv8bBuPK6btkvYDLgNOzy4rnfRDNvocHnAfWtSZ4jza-Otq0YqdI3FrTm4iCvXh9QMTfB4mxq_wnO2xMZXeMlOIg77pjJ-SNfoojZtcjenO0Xvz09vszlZLF9eZ48LYhkXeyKAF6qsnIJSUcsycCVQVzmrGANbcyUMh1JkOYWcO5pbQXMlJC1lXjBqFZ-iu-NuH8PX1qVBb8I2-vGlZlJmCiSVdKTYkbIxpBRdrfvYdCYeNAX9E1gfA-sxsP4NrPejxI9SGmG_cvFv-h_rG8Bsfm0</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Castillo-Saenz, J. R.</creator><creator>Nedev, N.</creator><creator>Valdez-Salas, B.</creator><creator>Martinez-Puente, M. A.</creator><creator>Aguirre-Tostado, F. S.</creator><creator>Mendivil-Palma, M. I.</creator><creator>Mateos, D.</creator><creator>Curiel-Alvarez, M. A.</creator><creator>Perez-Landeros, O.</creator><creator>Martinez-Guerra, E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4078-2521</orcidid><orcidid>https://orcid.org/0000-0001-8818-4307</orcidid><orcidid>https://orcid.org/0000-0002-2308-1259</orcidid><orcidid>https://orcid.org/0000-0003-3391-010X</orcidid><orcidid>https://orcid.org/0000-0003-0877-2198</orcidid><orcidid>https://orcid.org/0000-0001-9027-8820</orcidid><orcidid>https://orcid.org/0000-0002-5316-0329</orcidid><orcidid>https://orcid.org/0000-0002-8721-0179</orcidid><orcidid>https://orcid.org/0000-0002-4141-1020</orcidid><orcidid>https://orcid.org/0000-0002-6788-7545</orcidid></search><sort><creationdate>20210801</creationdate><title>Growth of ZnO thin films at low temperature by plasma-enhanced atomic layer deposition using H2O and O2 plasma oxidants</title><author>Castillo-Saenz, J. R. ; Nedev, N. ; Valdez-Salas, B. ; Martinez-Puente, M. A. ; Aguirre-Tostado, F. S. ; Mendivil-Palma, M. I. ; Mateos, D. ; Curiel-Alvarez, M. A. ; Perez-Landeros, O. ; Martinez-Guerra, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234x-40389bde90b91c260eb01edec9220cf394a30b4671073e17c4179451b57821c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic force microscopy</topic><topic>Atomic layer epitaxy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Flexible components</topic><topic>High temperature</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Optoelectronics</topic><topic>Oxidizing agents</topic><topic>Oxygen plasma</topic><topic>Photoelectrons</topic><topic>Plasma</topic><topic>Plasmas (physics)</topic><topic>Polyethylene terephthalate</topic><topic>Substrates</topic><topic>Thin films</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castillo-Saenz, J. R.</creatorcontrib><creatorcontrib>Nedev, N.</creatorcontrib><creatorcontrib>Valdez-Salas, B.</creatorcontrib><creatorcontrib>Martinez-Puente, M. A.</creatorcontrib><creatorcontrib>Aguirre-Tostado, F. S.</creatorcontrib><creatorcontrib>Mendivil-Palma, M. I.</creatorcontrib><creatorcontrib>Mateos, D.</creatorcontrib><creatorcontrib>Curiel-Alvarez, M. A.</creatorcontrib><creatorcontrib>Perez-Landeros, O.</creatorcontrib><creatorcontrib>Martinez-Guerra, E.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castillo-Saenz, J. R.</au><au>Nedev, N.</au><au>Valdez-Salas, B.</au><au>Martinez-Puente, M. A.</au><au>Aguirre-Tostado, F. S.</au><au>Mendivil-Palma, M. I.</au><au>Mateos, D.</au><au>Curiel-Alvarez, M. A.</au><au>Perez-Landeros, O.</au><au>Martinez-Guerra, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of ZnO thin films at low temperature by plasma-enhanced atomic layer deposition using H2O and O2 plasma oxidants</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>32</volume><issue>15</issue><spage>20274</spage><epage>20283</epage><pages>20274-20283</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Zinc oxide (ZnO) thin films were grown at 70 °C by plasma-enhanced atomic layer deposition using H
2
O and O
2
plasmas. Plasma oxidants were used in order to improve the ZnO crystallinity and optoelectronic properties, avoiding high-temperature synthesis. The deposition parameters were optimized to achieve saturation in each reaction step. X-ray photoelectron spectroscopy (XPS) reveals high purity of the obtained ZnO films. X-ray diffraction (XRD) measurements indicate that the grown layers are polycrystalline and that the H
2
O plasma synthesis leads to better crystallinity than the O
2
plasma as inferred from the intensity of the (100) and (002) peaks. The films are with high optical transmission, ~90%, as inferred from UV–visible (UV–Vis) transmittance measurements, and optical band gaps of 3.22 and 3.23 eV for H
2
O and O
2
plasma, respectively. Atomic force microscopy (AFM) indicates that the films are smooth, with an average roughness of ~ 0.22 nm. The growth rate was found to be in the range of 1.2–1.4 Å/cycle. The XPS, XRD, UV–Vis, and AFM results prove the possibility to obtain high-quality ZnO films by O
2
and H
2
O plasma processes at 70 °C with chemical, structural, and optical properties promising for flexible electronics. ZnO films were successfully deposited on polyethylene terephthalate substrates using the optimal conditions for H
2
O plasma process. No damage of the film surface or substrate was observed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-06533-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4078-2521</orcidid><orcidid>https://orcid.org/0000-0001-8818-4307</orcidid><orcidid>https://orcid.org/0000-0002-2308-1259</orcidid><orcidid>https://orcid.org/0000-0003-3391-010X</orcidid><orcidid>https://orcid.org/0000-0003-0877-2198</orcidid><orcidid>https://orcid.org/0000-0001-9027-8820</orcidid><orcidid>https://orcid.org/0000-0002-5316-0329</orcidid><orcidid>https://orcid.org/0000-0002-8721-0179</orcidid><orcidid>https://orcid.org/0000-0002-4141-1020</orcidid><orcidid>https://orcid.org/0000-0002-6788-7545</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2021-08, Vol.32 (15), p.20274-20283 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2556905151 |
source | Springer Nature - Complete Springer Journals |
subjects | Atomic force microscopy Atomic layer epitaxy Characterization and Evaluation of Materials Chemistry and Materials Science Crystal structure Crystallinity Flexible components High temperature Low temperature Materials Science Optical and Electronic Materials Optical properties Optoelectronics Oxidizing agents Oxygen plasma Photoelectrons Plasma Plasmas (physics) Polyethylene terephthalate Substrates Thin films X ray photoelectron spectroscopy X-ray diffraction Zinc oxide Zinc oxides |
title | Growth of ZnO thin films at low temperature by plasma-enhanced atomic layer deposition using H2O and O2 plasma oxidants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20ZnO%20thin%20films%20at%20low%20temperature%20by%20plasma-enhanced%20atomic%20layer%20deposition%20using%20H2O%20and%20O2%20plasma%20oxidants&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Castillo-Saenz,%20J.%20R.&rft.date=2021-08-01&rft.volume=32&rft.issue=15&rft.spage=20274&rft.epage=20283&rft.pages=20274-20283&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-06533-x&rft_dat=%3Cproquest_cross%3E2556905151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556905151&rft_id=info:pmid/&rfr_iscdi=true |