Biomechanical analysis using Kinovea for sports application

This paper assesses the reliability of HD VideoCam-Kinovea as an alternative tool in conducting motion analysis and measuring knee relative angle of drop jump movement. The motion capture and analysis procedure were conducted in the Biomechanics Lab, Shibaura Institute of Technology, Omiya Campus, J...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2018-04, Vol.342 (1), p.12097
Hauptverfasser: Nor Adnan, Nor Muaza, Ab Patar, Mohd Nor Azmi, Lee, Hokyoo, Yamamoto, Shin-Ichiroh, Jong-Young, Lee, Mahmud, Jamaluddin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper assesses the reliability of HD VideoCam-Kinovea as an alternative tool in conducting motion analysis and measuring knee relative angle of drop jump movement. The motion capture and analysis procedure were conducted in the Biomechanics Lab, Shibaura Institute of Technology, Omiya Campus, Japan. A healthy subject without any gait disorder (BMI of 28.60 ± 1.40) was recruited. The volunteered subject was asked to per the drop jump movement on preset platform and the motion was simultaneously recorded using an established infrared motion capture system (Hawk-Cortex) and a HD VideoCam in the sagittal plane only. The capture was repeated for 5 times. The outputs (video recordings) from the HD VideoCam were input into Kinovea (an open-source software) and the drop jump pattern was tracked and analysed. These data are compared with the drop jump pattern tracked and analysed earlier using the Hawk-Cortex system. In general, the results obtained (drop jump pattern) using the HD VideoCam-Kinovea are close to the results obtained using the established motion capture system. Basic statistical analyses show that most average variances are less than 10%, thus proving the repeatability of the protocol and the reliability of the results. It can be concluded that the integration of HD VideoCam-Kinovea has the potential to become a reliable motion capture-analysis system. Moreover, it is low cost, portable and easy to use. As a conclusion, the current study and its findings are found useful and has contributed to enhance significant knowledge pertaining to motion capture-analysis, drop jump movement and HD VideoCam-Kinovea integration.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/342/1/012097