Machine Learning and Deep Learning Methods for Building Intelligent Systems in Medicine and Drug Discovery: A Comprehensive Survey

With the advancements in computer technology, there is a rapid development of intelligent systems to understand the complex relationships in data to make predictions and classifications. Artificail Intelligence based framework is rapidly revolutionizing the healthcare industry. These intelligent sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-07
Hauptverfasser: Chowdary, G Jignesh, Suganya, G, Premalatha, M, Asnath Victy Phamila Y, Karunamurthy, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the advancements in computer technology, there is a rapid development of intelligent systems to understand the complex relationships in data to make predictions and classifications. Artificail Intelligence based framework is rapidly revolutionizing the healthcare industry. These intelligent systems are built with machine learning and deep learning based robust models for early diagnosis of diseases and demonstrates a promising supplementary diagnostic method for frontline clinical doctors and surgeons. Machine Learning and Deep Learning based systems can streamline and simplify the steps involved in diagnosis of diseases from clinical and image-based data, thus providing significant clinician support and workflow optimization. They mimic human cognition and are even capable of diagnosing diseases that cannot be diagnosed with human intelligence. This paper focuses on the survey of machine learning and deep learning applications in across 16 medical specialties, namely Dental medicine, Haematology, Surgery, Cardiology, Pulmonology, Orthopedics, Radiology, Oncology, General medicine, Psychiatry, Endocrinology, Neurology, Dermatology, Hepatology, Nephrology, Ophthalmology, and Drug discovery. In this paper along with the survey, we discuss the advancements of medical practices with these systems and also the impact of these systems on medical professionals.
ISSN:2331-8422