An Infinite Dimensional Virtual Cohomology Group of \(\textbf{SL}_3(\mathbb{Z}[t])\)
We prove that \(\textbf{SL}_3(\mathbb{Z}[t])\) has a finite index subgroup \(\Gamma\) such that \(H^2(\Gamma; \mathbb{Q})\) is infinite dimensional. The proof uses the geometry of the Euclidean building for \(\textbf{SL}_3(\mathbb{Q}((t^{-1})))\).
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-07 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that \(\textbf{SL}_3(\mathbb{Z}[t])\) has a finite index subgroup \(\Gamma\) such that \(H^2(\Gamma; \mathbb{Q})\) is infinite dimensional. The proof uses the geometry of the Euclidean building for \(\textbf{SL}_3(\mathbb{Q}((t^{-1})))\). |
---|---|
ISSN: | 2331-8422 |