An Infinite Dimensional Virtual Cohomology Group of \(\textbf{SL}_3(\mathbb{Z}[t])\)

We prove that \(\textbf{SL}_3(\mathbb{Z}[t])\) has a finite index subgroup \(\Gamma\) such that \(H^2(\Gamma; \mathbb{Q})\) is infinite dimensional. The proof uses the geometry of the Euclidean building for \(\textbf{SL}_3(\mathbb{Q}((t^{-1})))\).

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-07
1. Verfasser: Goroff, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that \(\textbf{SL}_3(\mathbb{Z}[t])\) has a finite index subgroup \(\Gamma\) such that \(H^2(\Gamma; \mathbb{Q})\) is infinite dimensional. The proof uses the geometry of the Euclidean building for \(\textbf{SL}_3(\mathbb{Q}((t^{-1})))\).
ISSN:2331-8422