Studies of Gamma-Ray Shower Reconstruction Using Deep Learning

The Cosmic Multiperspective Event Tracker (CoMET) R&D project aims to optimize the techniques for the detection of soft-spectrum sources through very-high-energy gamma-ray observations using particle detectors (called ALTO detectors), and atmospheric Cherenkov light collectors (called CLiC detec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-07
Hauptverfasser: Bylund, Tomas, Mezek, Gašper Kukec, Mohanraj Senniappan, Becherini, Yvonne, Punch, Michael, Thoudam, Satyendra, Ernenwein, Jean-Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Cosmic Multiperspective Event Tracker (CoMET) R&D project aims to optimize the techniques for the detection of soft-spectrum sources through very-high-energy gamma-ray observations using particle detectors (called ALTO detectors), and atmospheric Cherenkov light collectors (called CLiC detectors). The accurate reconstruction of the energies and maximum depths of gamma-ray events using a surface array only, is an especially challenging problem at low energies, and the focus of the project. In this contribution, we leverage Convolutional Neural Networks (CNNs) using the ALTO detectors only, to try to improve reconstruction performance at lower energies ( < 1 TeV ) as compared to the SEMLA analysis procedure, which is a more traditional method using manually derived features.
ISSN:2331-8422