Synthesis of Ag/Co nanoparticles by dual pulsed laser ablation for synergistic photothermal study
Magneto-plasmonic nanoparticles have gained increasing interest, especially for the synergistic response study of hyperthermia applications. However, some challenges, including the synthesis process, dose optimization of laser, and magnetic field strength besides its frequency, need significant atte...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2021-08, Vol.127 (8), Article 632 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magneto-plasmonic nanoparticles have gained increasing interest, especially for the synergistic response study of hyperthermia applications. However, some challenges, including the synthesis process, dose optimization of laser, and magnetic field strength besides its frequency, need significant attention. Herein, we prepared magneto-plasmonic Ag/Co nanomaterials for photothermal performance evaluation using dual-beam of the Q-switched Nd:YAG 1064 nm pulsed laser ablation in distilled water, which can avoid any additive, contaminations, complicated route, and multiple purifications processes as they may occur in chemical synthesis processes. Properties, morphologies, and compositions of synthesized nanomaterials were studied, and results suggested that the main constituents of NPs were Ag/Co. The detailed theoretical calculation of the photothermal performance of nanofluid is described, along with an experimental study of nanofluid and the water as a reference medium using NIR 808 nm laser. The overall results suggest that the higher temperatures for Ag/Co nanofluid compared with water alone were recorded as 16.5 °C, 20.9 °C, 24.7 °C, 24.5 °C, 27.7 °C, and 30.2 °C during 808 nm laser irradiation operating at different corresponding powers, respectively. The possible reason for the higher temperature profiles and the rapid temperature rise of nanofluid than water alone is the localized surface plasmon effects of nanoparticles. These results evidence that silver and cobalt nanomaterials composite structures could significantly increase hyperthermia based on an effective and simple synthesis approach. |
---|---|
ISSN: | 0947-8396 1432-0630 |
DOI: | 10.1007/s00339-021-04706-3 |