In silico investigation of Methyl parathion and Diazinon with different Metabolic protein in Drosophila melanogaster

Chemical pollutant such as insecticide, pesticide and drugs are mainly used for agriculture, industry and economic development, which are well known for environment pollutant due to its toxicity and persistence in the nature. It can accumulate into the environment and continuously contaminate the fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research journal of pharmacy and technology 2021-07, Vol.14 (7), p.3794-3798
Hauptverfasser: Sahoo, Suman, Rahman, Md. Lutfur, Mitra, Sagarika, M., Rajiniraja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemical pollutant such as insecticide, pesticide and drugs are mainly used for agriculture, industry and economic development, which are well known for environment pollutant due to its toxicity and persistence in the nature. It can accumulate into the environment and continuously contaminate the food chain which causes threat to the health of consumer including human. Based on all these studies our investigation deals with the effects of two insecticides viz. methyl parathion and diazinon to non target organism like Drosophila melanogaster. In this study we have performed molecular modeling, docking and protein function analysis of different metabolic and physiological enzyme of Drosophila melanogaster such as acetylcholinesterase (AchE), Glutathione S-transferase D1(GST) and Protein kinase C (PKC) with these insecticides of six combinations (AchE + Diazinon, AchE + methyl parathion, GST+Diazinon, GST+Methyl parathion, PKC+Diazinon, PKC+Methyl parathion). Molecular docking results showing best binding affinity for GST+ Methyl parathion with binding energy of -4.79 kcal/mol. Overall, methyl parathion produces efficient binding toward all target protein when compare to diazinon. However, more detailed analysis need to be carried out to have an in-depth understanding of in vivo significance of these bimolecular interactions.
ISSN:0974-3618
0974-360X
0974-306X
DOI:10.52711/0974-360X.2021.00657