Poly glycerol sebacate/ polycaprolactone/ carbon quantum dots fibrous scaffold as a multifunctional platform for cardiac tissue engineering
In this study, a new nanocomposite scaffold entailing poly glycerol sebacate/polycaprolactone/carbon quantum dots (PGS/PCL/CQDs) was designed and fabricated for cardiac muscle regeneration. The PGS/PCL fibrous scaffolds were electrospun in disparate weight ratios—2:1 and 1:1. Next, different amounts...
Gespeichert in:
Veröffentlicht in: | Materials chemistry and physics 2021-07, Vol.266, p.124543, Article 124543 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, a new nanocomposite scaffold entailing poly glycerol sebacate/polycaprolactone/carbon quantum dots (PGS/PCL/CQDs) was designed and fabricated for cardiac muscle regeneration. The PGS/PCL fibrous scaffolds were electrospun in disparate weight ratios—2:1 and 1:1. Next, different amounts of CQDs (0.5 and 1 wt %) were incorporated in the PGS/PCL fibers to reach a ternary nanocomposite scaffold. Besides characterizing the physical and chemical properties of scaffolds—morphology, chemical bonds, mechanical properties, wettability, and electrical conductivity—the biological properties including cytotoxicity, cell attachment and proliferation, and degradation rate were assessed in vitro. To give proof of CQDs inclusion in the fibers, transmission electron microscopy and fluorescent assay were applied. Addition of both PGS and CQDs to the PCL fibers resulted in a significant decrease in the mean fiber diameter of ternary nanocomposite scaffold from 862 ± 167 down to 376.82 ± 150 nm. The electrical conductivity of scaffolds was increased through the incorporation of CQDs, whereas the addition of CQDs up to 1 wt % led to a decrease in the cell viability. According to the weight ratio optimization, the PGS/PCL/CQDs scaffold (2:1:0.5) outperformed the others in physical, chemical, and biological properties; the scaffold's Young's modulus, elongation at break, and ultimate tensile strength were 11 ± 1 MPa, 10 ± 1 mm, and 5 ± 1 MPa, respectively. Moreover, the cell viability of optimized nanocomposite scaffold was found to be very close to the negative control proving its desirable cell compatibility. Therefore, the optimized PGS/PCL/CQDs nanocomposite scaffold can be potentially promising for cardiac muscle tissue engineering.
[Display omitted]
•A ternary multifunctional scaffold with aligned fibers was designed for cardiac muscle regeneration.•Addition of both PGS and CQDs led to a significant decrease in the fiber diameter.•Increasing in CQDs weight ratio up to 1 wt % caused cytotoxicity.•Different PCL, PGS, and CQDs contents were used to reach an optimized scaffold. |
---|---|
ISSN: | 0254-0584 1879-3312 |
DOI: | 10.1016/j.matchemphys.2021.124543 |