Efficient estimation and filtering for multivariate jump–diffusions
This paper develops estimators of the transition density, filters, and parameters of multivariate jump–diffusion models. The drift, volatility, jump intensity, and jump magnitude are allowed to be state-dependent and non-affine. It is not necessary to diagonalize the volatility matrix. Our density a...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2021-07, Vol.223 (1), p.251-275 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper develops estimators of the transition density, filters, and parameters of multivariate jump–diffusion models. The drift, volatility, jump intensity, and jump magnitude are allowed to be state-dependent and non-affine. It is not necessary to diagonalize the volatility matrix. Our density and filter estimators converge at the canonical rate typically associated with exact Monte Carlo estimation. Our parameter estimators have the same asymptotic distribution as maximum likelihood estimators, which are often intractable for the class of models we consider. The results of this paper enable the empirical analysis of previously intractable models of asset prices and economic time series. |
---|---|
ISSN: | 0304-4076 1872-6895 |
DOI: | 10.1016/j.jeconom.2020.09.004 |