Anisotropy of optical phonons in biaxially stressed zinc-blende- and diamond-type semiconductors and alloys
The splitting of long-wave optical phonons that arises in biaxially stressed zinc-blende- and diamond-type crystals due to violation of cubic symmetry in such crystals was studied both theoretically and experimentally (using micro-Raman technique). The anglular dispersion of optical phonons near the...
Gespeichert in:
Veröffentlicht in: | Physica. B, Condensed matter Condensed matter, 2021-08, Vol.614, p.413008, Article 413008 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The splitting of long-wave optical phonons that arises in biaxially stressed zinc-blende- and diamond-type crystals due to violation of cubic symmetry in such crystals was studied both theoretically and experimentally (using micro-Raman technique). The anglular dispersion of optical phonons near the center of the Brillouin zone was calculated for split modes in biaxially stressed (001)-oriented films. The results obtained were used to analyze the effects due to strain and alloying on optical-phonon frequencies in stressed Ge, InGaAs and InAlAs films grown on GaAs (001) substrates. The developed approach permits a more precise determination of both the composition and the biaxial strain in AIIIBV alloy films based on an analysis of Raman spectra taken from such films. |
---|---|
ISSN: | 0921-4526 1873-2135 |
DOI: | 10.1016/j.physb.2021.413008 |