Power boundedness in the maximum norm of stability matrices for ADI methods
The study of convergence of time integrators, applied to linear discretized PDEs, relies on the power boundedness of the stability matrix R . The present work investigates power boundedness in the maximum norm for ADI-type integrators in arbitrary space dimension m . Examples are the Douglas scheme,...
Gespeichert in:
Veröffentlicht in: | BIT 2021-09, Vol.61 (3), p.805-827 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The study of convergence of time integrators, applied to linear discretized PDEs, relies on the power boundedness of the stability matrix
R
. The present work investigates power boundedness in the maximum norm for ADI-type integrators in arbitrary space dimension
m
. Examples are the Douglas scheme, the Craig–Sneyd scheme, and W-methods with a low stage number. It is shown that for some important integrators
‖
R
n
‖
∞
is bounded in the maximum norm by a constant times
min
(
(
ln
(
1
+
n
)
)
m
,
(
ln
N
)
m
)
, where
m
is the space dimension of the PDE, and
N
≥
2
is the space discretization parameter. For
m
≤
2
sharper bounds are obtained that are independent of
n
and
N
. |
---|---|
ISSN: | 0006-3835 1572-9125 |
DOI: | 10.1007/s10543-021-00845-4 |