Power boundedness in the maximum norm of stability matrices for ADI methods

The study of convergence of time integrators, applied to linear discretized PDEs, relies on the power boundedness of the stability matrix R . The present work investigates power boundedness in the maximum norm for ADI-type integrators in arbitrary space dimension m . Examples are the Douglas scheme,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIT 2021-09, Vol.61 (3), p.805-827
Hauptverfasser: González-Pinto, S., Hairer, E., Hernández-Abreu, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The study of convergence of time integrators, applied to linear discretized PDEs, relies on the power boundedness of the stability matrix R . The present work investigates power boundedness in the maximum norm for ADI-type integrators in arbitrary space dimension m . Examples are the Douglas scheme, the Craig–Sneyd scheme, and W-methods with a low stage number. It is shown that for some important integrators ‖ R n ‖ ∞ is bounded in the maximum norm by a constant times min ( ( ln ( 1 + n ) ) m , ( ln N ) m ) , where m is the space dimension of the PDE, and  N ≥ 2 is the space discretization parameter. For  m ≤ 2 sharper bounds are obtained that are independent of n and N .
ISSN:0006-3835
1572-9125
DOI:10.1007/s10543-021-00845-4