A Lightweight Model of VGG-16 for Remote Sensing Image Classification

In planetary science, it is an important basic work to recognize and classify the features of topography and geomorphology from the massive data of planetary remote sensing. Therefore, this article proposes a lightweight model based on VGG-16, which can selectively extract some features of remote se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.6916-6922
Hauptverfasser: Ye, Mu, Ruiwen, Ni, Chang, Zhang, He, Gong, Tianli, Hu, Shijun, Li, Yu, Sun, Tong, Zhang, Ying, Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6922
container_issue
container_start_page 6916
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 14
creator Ye, Mu
Ruiwen, Ni
Chang, Zhang
He, Gong
Tianli, Hu
Shijun, Li
Yu, Sun
Tong, Zhang
Ying, Guo
description In planetary science, it is an important basic work to recognize and classify the features of topography and geomorphology from the massive data of planetary remote sensing. Therefore, this article proposes a lightweight model based on VGG-16, which can selectively extract some features of remote sensing images, remove redundant information, and recognize and classify remote sensing images. This model not only ensures the accuracy, but also reduces the parameters of the model. According to our experimental results, our model has a great improvement in remote sensing image classification, from the original accuracy of 85%-98% now. At the same time, the model has a great improvement in convergence speed and classification performance. By inputting the remote sensing image data of ultra-low pixels (64 * 64) into our model, we prove that our model still has a high accuracy rate of 95% for the remote sensing image with ultra-low pixels and less feature points. Therefore, the model has a good application prospect in remote sensing image fine classification, very low pixel, and less image classification.
doi_str_mv 10.1109/JSTARS.2021.3090085
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2555725336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9463715</ieee_id><doaj_id>oai_doaj_org_article_9299c6cba28945beb2ab4c9daff02f84</doaj_id><sourcerecordid>2555725336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d9c9e25676d8d5326820b0228056a1617a57610e6bebf3b7533db135623ffe2a3</originalsourceid><addsrcrecordid>eNo9kUFLAzEQhYMoWKu_wEvA89ZksslujqVorVSEVr2G7O6kprSNJlvEf-_WLb3MwPDem-EbQm45G3HO9P3z8m28WI6AAR8Jphkr5RkZAJc841LIczLgWuiM5yy_JFcprRlTUGgxIA9jOverz_YHD5W-hAY3NDj6MZ1mXFEXIl3gNrRIl7hLfreis61dIZ1sbEre-dq2PuyuyYWzm4Q3xz4k748Pb5OnbP46nU3G86zOWdlmja41glSFaspGClAlsIoBlEwqyxUvrCwUZ6gqrJyoCilEU3EhFQjnEKwYklmf2wS7Nl_Rb238NcF68z8IcWVsbH29QaNB61rVlYVS57ILBFvltW6scwxcmXdZd33WVwzfe0ytWYd93HXnG5BSFtBtV51K9Ko6hpQiutNWzsyBvenZmwN7c2TfuW57l0fEk0PnShTdP_4AN119jw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555725336</pqid></control><display><type>article</type><title>A Lightweight Model of VGG-16 for Remote Sensing Image Classification</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ye, Mu ; Ruiwen, Ni ; Chang, Zhang ; He, Gong ; Tianli, Hu ; Shijun, Li ; Yu, Sun ; Tong, Zhang ; Ying, Guo</creator><creatorcontrib>Ye, Mu ; Ruiwen, Ni ; Chang, Zhang ; He, Gong ; Tianli, Hu ; Shijun, Li ; Yu, Sun ; Tong, Zhang ; Ying, Guo</creatorcontrib><description>In planetary science, it is an important basic work to recognize and classify the features of topography and geomorphology from the massive data of planetary remote sensing. Therefore, this article proposes a lightweight model based on VGG-16, which can selectively extract some features of remote sensing images, remove redundant information, and recognize and classify remote sensing images. This model not only ensures the accuracy, but also reduces the parameters of the model. According to our experimental results, our model has a great improvement in remote sensing image classification, from the original accuracy of 85%-98% now. At the same time, the model has a great improvement in convergence speed and classification performance. By inputting the remote sensing image data of ultra-low pixels (64 * 64) into our model, we prove that our model still has a high accuracy rate of 95% for the remote sensing image with ultra-low pixels and less feature points. Therefore, the model has a good application prospect in remote sensing image fine classification, very low pixel, and less image classification.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3090085</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Adaptation models ; Classification ; Convolution ; Data models ; Feature extraction ; Geomorphology ; Hyperspectral imaging ; Image classification ; less feature points ; Lightweight ; nonlinear correction layer ; Pixels ; Remote sensing ; Sensors ; Training ; Vgg-16 ; zero padding</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.6916-6922</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d9c9e25676d8d5326820b0228056a1617a57610e6bebf3b7533db135623ffe2a3</citedby><cites>FETCH-LOGICAL-c408t-d9c9e25676d8d5326820b0228056a1617a57610e6bebf3b7533db135623ffe2a3</cites><orcidid>0000-0002-4599-0293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Ye, Mu</creatorcontrib><creatorcontrib>Ruiwen, Ni</creatorcontrib><creatorcontrib>Chang, Zhang</creatorcontrib><creatorcontrib>He, Gong</creatorcontrib><creatorcontrib>Tianli, Hu</creatorcontrib><creatorcontrib>Shijun, Li</creatorcontrib><creatorcontrib>Yu, Sun</creatorcontrib><creatorcontrib>Tong, Zhang</creatorcontrib><creatorcontrib>Ying, Guo</creatorcontrib><title>A Lightweight Model of VGG-16 for Remote Sensing Image Classification</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>In planetary science, it is an important basic work to recognize and classify the features of topography and geomorphology from the massive data of planetary remote sensing. Therefore, this article proposes a lightweight model based on VGG-16, which can selectively extract some features of remote sensing images, remove redundant information, and recognize and classify remote sensing images. This model not only ensures the accuracy, but also reduces the parameters of the model. According to our experimental results, our model has a great improvement in remote sensing image classification, from the original accuracy of 85%-98% now. At the same time, the model has a great improvement in convergence speed and classification performance. By inputting the remote sensing image data of ultra-low pixels (64 * 64) into our model, we prove that our model still has a high accuracy rate of 95% for the remote sensing image with ultra-low pixels and less feature points. Therefore, the model has a good application prospect in remote sensing image fine classification, very low pixel, and less image classification.</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>Classification</subject><subject>Convolution</subject><subject>Data models</subject><subject>Feature extraction</subject><subject>Geomorphology</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>less feature points</subject><subject>Lightweight</subject><subject>nonlinear correction layer</subject><subject>Pixels</subject><subject>Remote sensing</subject><subject>Sensors</subject><subject>Training</subject><subject>Vgg-16</subject><subject>zero padding</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kUFLAzEQhYMoWKu_wEvA89ZksslujqVorVSEVr2G7O6kprSNJlvEf-_WLb3MwPDem-EbQm45G3HO9P3z8m28WI6AAR8Jphkr5RkZAJc841LIczLgWuiM5yy_JFcprRlTUGgxIA9jOverz_YHD5W-hAY3NDj6MZ1mXFEXIl3gNrRIl7hLfreis61dIZ1sbEre-dq2PuyuyYWzm4Q3xz4k748Pb5OnbP46nU3G86zOWdlmja41glSFaspGClAlsIoBlEwqyxUvrCwUZ6gqrJyoCilEU3EhFQjnEKwYklmf2wS7Nl_Rb238NcF68z8IcWVsbH29QaNB61rVlYVS57ILBFvltW6scwxcmXdZd33WVwzfe0ytWYd93HXnG5BSFtBtV51K9Ko6hpQiutNWzsyBvenZmwN7c2TfuW57l0fEk0PnShTdP_4AN119jw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ye, Mu</creator><creator>Ruiwen, Ni</creator><creator>Chang, Zhang</creator><creator>He, Gong</creator><creator>Tianli, Hu</creator><creator>Shijun, Li</creator><creator>Yu, Sun</creator><creator>Tong, Zhang</creator><creator>Ying, Guo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4599-0293</orcidid></search><sort><creationdate>2021</creationdate><title>A Lightweight Model of VGG-16 for Remote Sensing Image Classification</title><author>Ye, Mu ; Ruiwen, Ni ; Chang, Zhang ; He, Gong ; Tianli, Hu ; Shijun, Li ; Yu, Sun ; Tong, Zhang ; Ying, Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d9c9e25676d8d5326820b0228056a1617a57610e6bebf3b7533db135623ffe2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>Classification</topic><topic>Convolution</topic><topic>Data models</topic><topic>Feature extraction</topic><topic>Geomorphology</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>less feature points</topic><topic>Lightweight</topic><topic>nonlinear correction layer</topic><topic>Pixels</topic><topic>Remote sensing</topic><topic>Sensors</topic><topic>Training</topic><topic>Vgg-16</topic><topic>zero padding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Mu</creatorcontrib><creatorcontrib>Ruiwen, Ni</creatorcontrib><creatorcontrib>Chang, Zhang</creatorcontrib><creatorcontrib>He, Gong</creatorcontrib><creatorcontrib>Tianli, Hu</creatorcontrib><creatorcontrib>Shijun, Li</creatorcontrib><creatorcontrib>Yu, Sun</creatorcontrib><creatorcontrib>Tong, Zhang</creatorcontrib><creatorcontrib>Ying, Guo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Mu</au><au>Ruiwen, Ni</au><au>Chang, Zhang</au><au>He, Gong</au><au>Tianli, Hu</au><au>Shijun, Li</au><au>Yu, Sun</au><au>Tong, Zhang</au><au>Ying, Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lightweight Model of VGG-16 for Remote Sensing Image Classification</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>6916</spage><epage>6922</epage><pages>6916-6922</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>In planetary science, it is an important basic work to recognize and classify the features of topography and geomorphology from the massive data of planetary remote sensing. Therefore, this article proposes a lightweight model based on VGG-16, which can selectively extract some features of remote sensing images, remove redundant information, and recognize and classify remote sensing images. This model not only ensures the accuracy, but also reduces the parameters of the model. According to our experimental results, our model has a great improvement in remote sensing image classification, from the original accuracy of 85%-98% now. At the same time, the model has a great improvement in convergence speed and classification performance. By inputting the remote sensing image data of ultra-low pixels (64 * 64) into our model, we prove that our model still has a high accuracy rate of 95% for the remote sensing image with ultra-low pixels and less feature points. Therefore, the model has a good application prospect in remote sensing image fine classification, very low pixel, and less image classification.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3090085</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4599-0293</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.6916-6922
issn 1939-1404
2151-1535
language eng
recordid cdi_proquest_journals_2555725336
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Adaptation models
Classification
Convolution
Data models
Feature extraction
Geomorphology
Hyperspectral imaging
Image classification
less feature points
Lightweight
nonlinear correction layer
Pixels
Remote sensing
Sensors
Training
Vgg-16
zero padding
title A Lightweight Model of VGG-16 for Remote Sensing Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lightweight%20Model%20of%20VGG-16%20for%20Remote%20Sensing%20Image%20Classification&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Ye,%20Mu&rft.date=2021&rft.volume=14&rft.spage=6916&rft.epage=6922&rft.pages=6916-6922&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3090085&rft_dat=%3Cproquest_doaj_%3E2555725336%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555725336&rft_id=info:pmid/&rft_ieee_id=9463715&rft_doaj_id=oai_doaj_org_article_9299c6cba28945beb2ab4c9daff02f84&rfr_iscdi=true