A Lightweight Model of VGG-16 for Remote Sensing Image Classification
In planetary science, it is an important basic work to recognize and classify the features of topography and geomorphology from the massive data of planetary remote sensing. Therefore, this article proposes a lightweight model based on VGG-16, which can selectively extract some features of remote se...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.6916-6922 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6922 |
---|---|
container_issue | |
container_start_page | 6916 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 14 |
creator | Ye, Mu Ruiwen, Ni Chang, Zhang He, Gong Tianli, Hu Shijun, Li Yu, Sun Tong, Zhang Ying, Guo |
description | In planetary science, it is an important basic work to recognize and classify the features of topography and geomorphology from the massive data of planetary remote sensing. Therefore, this article proposes a lightweight model based on VGG-16, which can selectively extract some features of remote sensing images, remove redundant information, and recognize and classify remote sensing images. This model not only ensures the accuracy, but also reduces the parameters of the model. According to our experimental results, our model has a great improvement in remote sensing image classification, from the original accuracy of 85%-98% now. At the same time, the model has a great improvement in convergence speed and classification performance. By inputting the remote sensing image data of ultra-low pixels (64 * 64) into our model, we prove that our model still has a high accuracy rate of 95% for the remote sensing image with ultra-low pixels and less feature points. Therefore, the model has a good application prospect in remote sensing image fine classification, very low pixel, and less image classification. |
doi_str_mv | 10.1109/JSTARS.2021.3090085 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2555725336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9463715</ieee_id><doaj_id>oai_doaj_org_article_9299c6cba28945beb2ab4c9daff02f84</doaj_id><sourcerecordid>2555725336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d9c9e25676d8d5326820b0228056a1617a57610e6bebf3b7533db135623ffe2a3</originalsourceid><addsrcrecordid>eNo9kUFLAzEQhYMoWKu_wEvA89ZksslujqVorVSEVr2G7O6kprSNJlvEf-_WLb3MwPDem-EbQm45G3HO9P3z8m28WI6AAR8Jphkr5RkZAJc841LIczLgWuiM5yy_JFcprRlTUGgxIA9jOverz_YHD5W-hAY3NDj6MZ1mXFEXIl3gNrRIl7hLfreis61dIZ1sbEre-dq2PuyuyYWzm4Q3xz4k748Pb5OnbP46nU3G86zOWdlmja41glSFaspGClAlsIoBlEwqyxUvrCwUZ6gqrJyoCilEU3EhFQjnEKwYklmf2wS7Nl_Rb238NcF68z8IcWVsbH29QaNB61rVlYVS57ILBFvltW6scwxcmXdZd33WVwzfe0ytWYd93HXnG5BSFtBtV51K9Ko6hpQiutNWzsyBvenZmwN7c2TfuW57l0fEk0PnShTdP_4AN119jw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555725336</pqid></control><display><type>article</type><title>A Lightweight Model of VGG-16 for Remote Sensing Image Classification</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ye, Mu ; Ruiwen, Ni ; Chang, Zhang ; He, Gong ; Tianli, Hu ; Shijun, Li ; Yu, Sun ; Tong, Zhang ; Ying, Guo</creator><creatorcontrib>Ye, Mu ; Ruiwen, Ni ; Chang, Zhang ; He, Gong ; Tianli, Hu ; Shijun, Li ; Yu, Sun ; Tong, Zhang ; Ying, Guo</creatorcontrib><description>In planetary science, it is an important basic work to recognize and classify the features of topography and geomorphology from the massive data of planetary remote sensing. Therefore, this article proposes a lightweight model based on VGG-16, which can selectively extract some features of remote sensing images, remove redundant information, and recognize and classify remote sensing images. This model not only ensures the accuracy, but also reduces the parameters of the model. According to our experimental results, our model has a great improvement in remote sensing image classification, from the original accuracy of 85%-98% now. At the same time, the model has a great improvement in convergence speed and classification performance. By inputting the remote sensing image data of ultra-low pixels (64 * 64) into our model, we prove that our model still has a high accuracy rate of 95% for the remote sensing image with ultra-low pixels and less feature points. Therefore, the model has a good application prospect in remote sensing image fine classification, very low pixel, and less image classification.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3090085</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Adaptation models ; Classification ; Convolution ; Data models ; Feature extraction ; Geomorphology ; Hyperspectral imaging ; Image classification ; less feature points ; Lightweight ; nonlinear correction layer ; Pixels ; Remote sensing ; Sensors ; Training ; Vgg-16 ; zero padding</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.6916-6922</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d9c9e25676d8d5326820b0228056a1617a57610e6bebf3b7533db135623ffe2a3</citedby><cites>FETCH-LOGICAL-c408t-d9c9e25676d8d5326820b0228056a1617a57610e6bebf3b7533db135623ffe2a3</cites><orcidid>0000-0002-4599-0293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Ye, Mu</creatorcontrib><creatorcontrib>Ruiwen, Ni</creatorcontrib><creatorcontrib>Chang, Zhang</creatorcontrib><creatorcontrib>He, Gong</creatorcontrib><creatorcontrib>Tianli, Hu</creatorcontrib><creatorcontrib>Shijun, Li</creatorcontrib><creatorcontrib>Yu, Sun</creatorcontrib><creatorcontrib>Tong, Zhang</creatorcontrib><creatorcontrib>Ying, Guo</creatorcontrib><title>A Lightweight Model of VGG-16 for Remote Sensing Image Classification</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>In planetary science, it is an important basic work to recognize and classify the features of topography and geomorphology from the massive data of planetary remote sensing. Therefore, this article proposes a lightweight model based on VGG-16, which can selectively extract some features of remote sensing images, remove redundant information, and recognize and classify remote sensing images. This model not only ensures the accuracy, but also reduces the parameters of the model. According to our experimental results, our model has a great improvement in remote sensing image classification, from the original accuracy of 85%-98% now. At the same time, the model has a great improvement in convergence speed and classification performance. By inputting the remote sensing image data of ultra-low pixels (64 * 64) into our model, we prove that our model still has a high accuracy rate of 95% for the remote sensing image with ultra-low pixels and less feature points. Therefore, the model has a good application prospect in remote sensing image fine classification, very low pixel, and less image classification.</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>Classification</subject><subject>Convolution</subject><subject>Data models</subject><subject>Feature extraction</subject><subject>Geomorphology</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>less feature points</subject><subject>Lightweight</subject><subject>nonlinear correction layer</subject><subject>Pixels</subject><subject>Remote sensing</subject><subject>Sensors</subject><subject>Training</subject><subject>Vgg-16</subject><subject>zero padding</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kUFLAzEQhYMoWKu_wEvA89ZksslujqVorVSEVr2G7O6kprSNJlvEf-_WLb3MwPDem-EbQm45G3HO9P3z8m28WI6AAR8Jphkr5RkZAJc841LIczLgWuiM5yy_JFcprRlTUGgxIA9jOverz_YHD5W-hAY3NDj6MZ1mXFEXIl3gNrRIl7hLfreis61dIZ1sbEre-dq2PuyuyYWzm4Q3xz4k748Pb5OnbP46nU3G86zOWdlmja41glSFaspGClAlsIoBlEwqyxUvrCwUZ6gqrJyoCilEU3EhFQjnEKwYklmf2wS7Nl_Rb238NcF68z8IcWVsbH29QaNB61rVlYVS57ILBFvltW6scwxcmXdZd33WVwzfe0ytWYd93HXnG5BSFtBtV51K9Ko6hpQiutNWzsyBvenZmwN7c2TfuW57l0fEk0PnShTdP_4AN119jw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ye, Mu</creator><creator>Ruiwen, Ni</creator><creator>Chang, Zhang</creator><creator>He, Gong</creator><creator>Tianli, Hu</creator><creator>Shijun, Li</creator><creator>Yu, Sun</creator><creator>Tong, Zhang</creator><creator>Ying, Guo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4599-0293</orcidid></search><sort><creationdate>2021</creationdate><title>A Lightweight Model of VGG-16 for Remote Sensing Image Classification</title><author>Ye, Mu ; Ruiwen, Ni ; Chang, Zhang ; He, Gong ; Tianli, Hu ; Shijun, Li ; Yu, Sun ; Tong, Zhang ; Ying, Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d9c9e25676d8d5326820b0228056a1617a57610e6bebf3b7533db135623ffe2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>Classification</topic><topic>Convolution</topic><topic>Data models</topic><topic>Feature extraction</topic><topic>Geomorphology</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>less feature points</topic><topic>Lightweight</topic><topic>nonlinear correction layer</topic><topic>Pixels</topic><topic>Remote sensing</topic><topic>Sensors</topic><topic>Training</topic><topic>Vgg-16</topic><topic>zero padding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Mu</creatorcontrib><creatorcontrib>Ruiwen, Ni</creatorcontrib><creatorcontrib>Chang, Zhang</creatorcontrib><creatorcontrib>He, Gong</creatorcontrib><creatorcontrib>Tianli, Hu</creatorcontrib><creatorcontrib>Shijun, Li</creatorcontrib><creatorcontrib>Yu, Sun</creatorcontrib><creatorcontrib>Tong, Zhang</creatorcontrib><creatorcontrib>Ying, Guo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Mu</au><au>Ruiwen, Ni</au><au>Chang, Zhang</au><au>He, Gong</au><au>Tianli, Hu</au><au>Shijun, Li</au><au>Yu, Sun</au><au>Tong, Zhang</au><au>Ying, Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lightweight Model of VGG-16 for Remote Sensing Image Classification</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>6916</spage><epage>6922</epage><pages>6916-6922</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>In planetary science, it is an important basic work to recognize and classify the features of topography and geomorphology from the massive data of planetary remote sensing. Therefore, this article proposes a lightweight model based on VGG-16, which can selectively extract some features of remote sensing images, remove redundant information, and recognize and classify remote sensing images. This model not only ensures the accuracy, but also reduces the parameters of the model. According to our experimental results, our model has a great improvement in remote sensing image classification, from the original accuracy of 85%-98% now. At the same time, the model has a great improvement in convergence speed and classification performance. By inputting the remote sensing image data of ultra-low pixels (64 * 64) into our model, we prove that our model still has a high accuracy rate of 95% for the remote sensing image with ultra-low pixels and less feature points. Therefore, the model has a good application prospect in remote sensing image fine classification, very low pixel, and less image classification.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3090085</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4599-0293</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.6916-6922 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_proquest_journals_2555725336 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Adaptation models Classification Convolution Data models Feature extraction Geomorphology Hyperspectral imaging Image classification less feature points Lightweight nonlinear correction layer Pixels Remote sensing Sensors Training Vgg-16 zero padding |
title | A Lightweight Model of VGG-16 for Remote Sensing Image Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lightweight%20Model%20of%20VGG-16%20for%20Remote%20Sensing%20Image%20Classification&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Ye,%20Mu&rft.date=2021&rft.volume=14&rft.spage=6916&rft.epage=6922&rft.pages=6916-6922&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3090085&rft_dat=%3Cproquest_doaj_%3E2555725336%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555725336&rft_id=info:pmid/&rft_ieee_id=9463715&rft_doaj_id=oai_doaj_org_article_9299c6cba28945beb2ab4c9daff02f84&rfr_iscdi=true |