A Lightweight Model of VGG-16 for Remote Sensing Image Classification

In planetary science, it is an important basic work to recognize and classify the features of topography and geomorphology from the massive data of planetary remote sensing. Therefore, this article proposes a lightweight model based on VGG-16, which can selectively extract some features of remote se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.6916-6922
Hauptverfasser: Ye, Mu, Ruiwen, Ni, Chang, Zhang, He, Gong, Tianli, Hu, Shijun, Li, Yu, Sun, Tong, Zhang, Ying, Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In planetary science, it is an important basic work to recognize and classify the features of topography and geomorphology from the massive data of planetary remote sensing. Therefore, this article proposes a lightweight model based on VGG-16, which can selectively extract some features of remote sensing images, remove redundant information, and recognize and classify remote sensing images. This model not only ensures the accuracy, but also reduces the parameters of the model. According to our experimental results, our model has a great improvement in remote sensing image classification, from the original accuracy of 85%-98% now. At the same time, the model has a great improvement in convergence speed and classification performance. By inputting the remote sensing image data of ultra-low pixels (64 * 64) into our model, we prove that our model still has a high accuracy rate of 95% for the remote sensing image with ultra-low pixels and less feature points. Therefore, the model has a good application prospect in remote sensing image fine classification, very low pixel, and less image classification.
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2021.3090085