Numerical investigation of binary hybrid nanofluid in new configurations for curved-corrugated channel by thermal-hydraulic performance method

In this study, flow and heat transfer characteristics of binary hybrid nanofluid (CuO / MgO-water) through new configuration channel, namely: the curved-corrugated channel, are evaluated numerically using the multi-phase mixture model. The binary hybrid nanofluid is experimentally prepared with aver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2021-06, Vol.385, p.144-159
Hauptverfasser: Ajeel, Raheem K., Zulkifli, Rozli, Sopian, K., Fayyadh, Saba N., Fazlizan, Ahmad, Ibrahim, Adnan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue
container_start_page 144
container_title Powder technology
container_volume 385
creator Ajeel, Raheem K.
Zulkifli, Rozli
Sopian, K.
Fayyadh, Saba N.
Fazlizan, Ahmad
Ibrahim, Adnan
description In this study, flow and heat transfer characteristics of binary hybrid nanofluid (CuO / MgO-water) through new configuration channel, namely: the curved-corrugated channel, are evaluated numerically using the multi-phase mixture model. The binary hybrid nanofluid is experimentally prepared with average diameters of 40 nm and three volume fractions of nanoparticles of 1%,3%, and 5%. Measured thermophysical properties are employed to simulate the complex flow within the tested configurations of channel with presence of E-shaped baffles. Various geometric parameters such as gap ratio (GR = 0.2,0.3,0.4, and 0.5), blockage ratio (BR = 0.2,0.25,0.3, and 0.35), and pitch angle (β = 10°, 12.5°, and 15°) at different Reynolds number (8000–28,000) and volume fraction (φ) of CuO / MgO particles (0–5%) are considered to serve the purpose. The findings uncover that the binary hybrid nanofluid improves the thermophysical properties of the base fluid and thereby boost the thermal performance of the system. It is found that the thermal-hydraulic performance (THPF) of binary hybrid nanofluid enhances with increasing volume fraction, and this enhancement is close to 38% when Re = 28,000 and φ = 0.05. Regards the geometric parameters, THPF enhances by increasing the blockage ratio and decreasing the pitch angle while recording the best improvement at the particular gap ratio, i.e. 0.3. Binary hybrid nanofluid preparation and thermophysical properties measurement. [Display omitted] •A new model of curved channel is proposed and investigated numerically using binary hybrid nanofluid.•The thermal-hydraulic performance method and two-phase mixture model are used.•Thermophysical properties of CuO/MgO–water nanofluid is experimentally measured at different volume fractions.•Effects of volume fractions and geometric parameters on the thermal-hydraulic performance are investigated.•At a specific gap ratio, the high-volume fraction of hybrid nanofluid displays a higher THPF than the others.
doi_str_mv 10.1016/j.powtec.2021.02.055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555692254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591021001650</els_id><sourcerecordid>2555692254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-819310bed6c3f461ef6cb03e8765f56247c2ffa50bbeaf82b30937e275a51253</originalsourceid><addsrcrecordid>eNp9kE9P3DAQxa2qSGyBb8DBUs9Jx3acZC-VKtR_EoILB26W44yJV4m9nSSL9kvwmTFdzpxmDu-9mfdj7FpAKUDU33blPj0v6EoJUpQgS9D6E9uItlGFku3jZ7YBULLQWwHn7Ms87wCgVgI27OVunZCCsyMP8YDzEp7sElLkyfMuREtHPhw7Cj2PNiY_rnkLkUd85i5FH55W-q-fuU_E3UoH7AuXiNacgz13g40RR94d-TIgTXYshmNPdh2D43uk7JpsdMgnXIbUX7Izb8cZr97nBXv49fPh5k9xe__7782P28IpVS1FK7b5-w772ilf1QJ97TpQ2Da19rqWVeOk91ZD16H1rewUbFWDstFWC6nVBft6it1T-rfm1maXVor5opFa63orpa6yqjqpHKV5JvRmT2HKSIwA8wbe7MwJvHkDb0CaDD7bvp9smAscApKZXcDcsQ-EbjF9Ch8HvAIJfpJE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555692254</pqid></control><display><type>article</type><title>Numerical investigation of binary hybrid nanofluid in new configurations for curved-corrugated channel by thermal-hydraulic performance method</title><source>Elsevier ScienceDirect Journals</source><creator>Ajeel, Raheem K. ; Zulkifli, Rozli ; Sopian, K. ; Fayyadh, Saba N. ; Fazlizan, Ahmad ; Ibrahim, Adnan</creator><creatorcontrib>Ajeel, Raheem K. ; Zulkifli, Rozli ; Sopian, K. ; Fayyadh, Saba N. ; Fazlizan, Ahmad ; Ibrahim, Adnan</creatorcontrib><description>In this study, flow and heat transfer characteristics of binary hybrid nanofluid (CuO / MgO-water) through new configuration channel, namely: the curved-corrugated channel, are evaluated numerically using the multi-phase mixture model. The binary hybrid nanofluid is experimentally prepared with average diameters of 40 nm and three volume fractions of nanoparticles of 1%,3%, and 5%. Measured thermophysical properties are employed to simulate the complex flow within the tested configurations of channel with presence of E-shaped baffles. Various geometric parameters such as gap ratio (GR = 0.2,0.3,0.4, and 0.5), blockage ratio (BR = 0.2,0.25,0.3, and 0.35), and pitch angle (β = 10°, 12.5°, and 15°) at different Reynolds number (8000–28,000) and volume fraction (φ) of CuO / MgO particles (0–5%) are considered to serve the purpose. The findings uncover that the binary hybrid nanofluid improves the thermophysical properties of the base fluid and thereby boost the thermal performance of the system. It is found that the thermal-hydraulic performance (THPF) of binary hybrid nanofluid enhances with increasing volume fraction, and this enhancement is close to 38% when Re = 28,000 and φ = 0.05. Regards the geometric parameters, THPF enhances by increasing the blockage ratio and decreasing the pitch angle while recording the best improvement at the particular gap ratio, i.e. 0.3. Binary hybrid nanofluid preparation and thermophysical properties measurement. [Display omitted] •A new model of curved channel is proposed and investigated numerically using binary hybrid nanofluid.•The thermal-hydraulic performance method and two-phase mixture model are used.•Thermophysical properties of CuO/MgO–water nanofluid is experimentally measured at different volume fractions.•Effects of volume fractions and geometric parameters on the thermal-hydraulic performance are investigated.•At a specific gap ratio, the high-volume fraction of hybrid nanofluid displays a higher THPF than the others.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2021.02.055</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Baffle ; Baffles ; Binary hybrid nanofluid ; Computational fluid dynamics ; Configurations ; Copper oxides ; Curved-corrugated channel, simulation ; Diameters ; Fluid flow ; Gap ratio ; Heat transfer ; Magnesium oxide ; Multi-phase mixture model ; Nanofluids ; Nanoparticles ; Parameters ; Pitch (inclination) ; Reynolds number ; Thermophysical properties</subject><ispartof>Powder technology, 2021-06, Vol.385, p.144-159</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-819310bed6c3f461ef6cb03e8765f56247c2ffa50bbeaf82b30937e275a51253</citedby><cites>FETCH-LOGICAL-c334t-819310bed6c3f461ef6cb03e8765f56247c2ffa50bbeaf82b30937e275a51253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.powtec.2021.02.055$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Ajeel, Raheem K.</creatorcontrib><creatorcontrib>Zulkifli, Rozli</creatorcontrib><creatorcontrib>Sopian, K.</creatorcontrib><creatorcontrib>Fayyadh, Saba N.</creatorcontrib><creatorcontrib>Fazlizan, Ahmad</creatorcontrib><creatorcontrib>Ibrahim, Adnan</creatorcontrib><title>Numerical investigation of binary hybrid nanofluid in new configurations for curved-corrugated channel by thermal-hydraulic performance method</title><title>Powder technology</title><description>In this study, flow and heat transfer characteristics of binary hybrid nanofluid (CuO / MgO-water) through new configuration channel, namely: the curved-corrugated channel, are evaluated numerically using the multi-phase mixture model. The binary hybrid nanofluid is experimentally prepared with average diameters of 40 nm and three volume fractions of nanoparticles of 1%,3%, and 5%. Measured thermophysical properties are employed to simulate the complex flow within the tested configurations of channel with presence of E-shaped baffles. Various geometric parameters such as gap ratio (GR = 0.2,0.3,0.4, and 0.5), blockage ratio (BR = 0.2,0.25,0.3, and 0.35), and pitch angle (β = 10°, 12.5°, and 15°) at different Reynolds number (8000–28,000) and volume fraction (φ) of CuO / MgO particles (0–5%) are considered to serve the purpose. The findings uncover that the binary hybrid nanofluid improves the thermophysical properties of the base fluid and thereby boost the thermal performance of the system. It is found that the thermal-hydraulic performance (THPF) of binary hybrid nanofluid enhances with increasing volume fraction, and this enhancement is close to 38% when Re = 28,000 and φ = 0.05. Regards the geometric parameters, THPF enhances by increasing the blockage ratio and decreasing the pitch angle while recording the best improvement at the particular gap ratio, i.e. 0.3. Binary hybrid nanofluid preparation and thermophysical properties measurement. [Display omitted] •A new model of curved channel is proposed and investigated numerically using binary hybrid nanofluid.•The thermal-hydraulic performance method and two-phase mixture model are used.•Thermophysical properties of CuO/MgO–water nanofluid is experimentally measured at different volume fractions.•Effects of volume fractions and geometric parameters on the thermal-hydraulic performance are investigated.•At a specific gap ratio, the high-volume fraction of hybrid nanofluid displays a higher THPF than the others.</description><subject>Baffle</subject><subject>Baffles</subject><subject>Binary hybrid nanofluid</subject><subject>Computational fluid dynamics</subject><subject>Configurations</subject><subject>Copper oxides</subject><subject>Curved-corrugated channel, simulation</subject><subject>Diameters</subject><subject>Fluid flow</subject><subject>Gap ratio</subject><subject>Heat transfer</subject><subject>Magnesium oxide</subject><subject>Multi-phase mixture model</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Parameters</subject><subject>Pitch (inclination)</subject><subject>Reynolds number</subject><subject>Thermophysical properties</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9P3DAQxa2qSGyBb8DBUs9Jx3acZC-VKtR_EoILB26W44yJV4m9nSSL9kvwmTFdzpxmDu-9mfdj7FpAKUDU33blPj0v6EoJUpQgS9D6E9uItlGFku3jZ7YBULLQWwHn7Ms87wCgVgI27OVunZCCsyMP8YDzEp7sElLkyfMuREtHPhw7Cj2PNiY_rnkLkUd85i5FH55W-q-fuU_E3UoH7AuXiNacgz13g40RR94d-TIgTXYshmNPdh2D43uk7JpsdMgnXIbUX7Izb8cZr97nBXv49fPh5k9xe__7782P28IpVS1FK7b5-w772ilf1QJ97TpQ2Da19rqWVeOk91ZD16H1rewUbFWDstFWC6nVBft6it1T-rfm1maXVor5opFa63orpa6yqjqpHKV5JvRmT2HKSIwA8wbe7MwJvHkDb0CaDD7bvp9smAscApKZXcDcsQ-EbjF9Ch8HvAIJfpJE</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Ajeel, Raheem K.</creator><creator>Zulkifli, Rozli</creator><creator>Sopian, K.</creator><creator>Fayyadh, Saba N.</creator><creator>Fazlizan, Ahmad</creator><creator>Ibrahim, Adnan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope></search><sort><creationdate>202106</creationdate><title>Numerical investigation of binary hybrid nanofluid in new configurations for curved-corrugated channel by thermal-hydraulic performance method</title><author>Ajeel, Raheem K. ; Zulkifli, Rozli ; Sopian, K. ; Fayyadh, Saba N. ; Fazlizan, Ahmad ; Ibrahim, Adnan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-819310bed6c3f461ef6cb03e8765f56247c2ffa50bbeaf82b30937e275a51253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Baffle</topic><topic>Baffles</topic><topic>Binary hybrid nanofluid</topic><topic>Computational fluid dynamics</topic><topic>Configurations</topic><topic>Copper oxides</topic><topic>Curved-corrugated channel, simulation</topic><topic>Diameters</topic><topic>Fluid flow</topic><topic>Gap ratio</topic><topic>Heat transfer</topic><topic>Magnesium oxide</topic><topic>Multi-phase mixture model</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Parameters</topic><topic>Pitch (inclination)</topic><topic>Reynolds number</topic><topic>Thermophysical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ajeel, Raheem K.</creatorcontrib><creatorcontrib>Zulkifli, Rozli</creatorcontrib><creatorcontrib>Sopian, K.</creatorcontrib><creatorcontrib>Fayyadh, Saba N.</creatorcontrib><creatorcontrib>Fazlizan, Ahmad</creatorcontrib><creatorcontrib>Ibrahim, Adnan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ajeel, Raheem K.</au><au>Zulkifli, Rozli</au><au>Sopian, K.</au><au>Fayyadh, Saba N.</au><au>Fazlizan, Ahmad</au><au>Ibrahim, Adnan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of binary hybrid nanofluid in new configurations for curved-corrugated channel by thermal-hydraulic performance method</atitle><jtitle>Powder technology</jtitle><date>2021-06</date><risdate>2021</risdate><volume>385</volume><spage>144</spage><epage>159</epage><pages>144-159</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><abstract>In this study, flow and heat transfer characteristics of binary hybrid nanofluid (CuO / MgO-water) through new configuration channel, namely: the curved-corrugated channel, are evaluated numerically using the multi-phase mixture model. The binary hybrid nanofluid is experimentally prepared with average diameters of 40 nm and three volume fractions of nanoparticles of 1%,3%, and 5%. Measured thermophysical properties are employed to simulate the complex flow within the tested configurations of channel with presence of E-shaped baffles. Various geometric parameters such as gap ratio (GR = 0.2,0.3,0.4, and 0.5), blockage ratio (BR = 0.2,0.25,0.3, and 0.35), and pitch angle (β = 10°, 12.5°, and 15°) at different Reynolds number (8000–28,000) and volume fraction (φ) of CuO / MgO particles (0–5%) are considered to serve the purpose. The findings uncover that the binary hybrid nanofluid improves the thermophysical properties of the base fluid and thereby boost the thermal performance of the system. It is found that the thermal-hydraulic performance (THPF) of binary hybrid nanofluid enhances with increasing volume fraction, and this enhancement is close to 38% when Re = 28,000 and φ = 0.05. Regards the geometric parameters, THPF enhances by increasing the blockage ratio and decreasing the pitch angle while recording the best improvement at the particular gap ratio, i.e. 0.3. Binary hybrid nanofluid preparation and thermophysical properties measurement. [Display omitted] •A new model of curved channel is proposed and investigated numerically using binary hybrid nanofluid.•The thermal-hydraulic performance method and two-phase mixture model are used.•Thermophysical properties of CuO/MgO–water nanofluid is experimentally measured at different volume fractions.•Effects of volume fractions and geometric parameters on the thermal-hydraulic performance are investigated.•At a specific gap ratio, the high-volume fraction of hybrid nanofluid displays a higher THPF than the others.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2021.02.055</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-5910
ispartof Powder technology, 2021-06, Vol.385, p.144-159
issn 0032-5910
1873-328X
language eng
recordid cdi_proquest_journals_2555692254
source Elsevier ScienceDirect Journals
subjects Baffle
Baffles
Binary hybrid nanofluid
Computational fluid dynamics
Configurations
Copper oxides
Curved-corrugated channel, simulation
Diameters
Fluid flow
Gap ratio
Heat transfer
Magnesium oxide
Multi-phase mixture model
Nanofluids
Nanoparticles
Parameters
Pitch (inclination)
Reynolds number
Thermophysical properties
title Numerical investigation of binary hybrid nanofluid in new configurations for curved-corrugated channel by thermal-hydraulic performance method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20binary%20hybrid%20nanofluid%20in%20new%20configurations%20for%20curved-corrugated%20channel%20by%20thermal-hydraulic%20performance%20method&rft.jtitle=Powder%20technology&rft.au=Ajeel,%20Raheem%20K.&rft.date=2021-06&rft.volume=385&rft.spage=144&rft.epage=159&rft.pages=144-159&rft.issn=0032-5910&rft.eissn=1873-328X&rft_id=info:doi/10.1016/j.powtec.2021.02.055&rft_dat=%3Cproquest_cross%3E2555692254%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555692254&rft_id=info:pmid/&rft_els_id=S0032591021001650&rfr_iscdi=true