Numerical investigation of binary hybrid nanofluid in new configurations for curved-corrugated channel by thermal-hydraulic performance method

In this study, flow and heat transfer characteristics of binary hybrid nanofluid (CuO / MgO-water) through new configuration channel, namely: the curved-corrugated channel, are evaluated numerically using the multi-phase mixture model. The binary hybrid nanofluid is experimentally prepared with aver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2021-06, Vol.385, p.144-159
Hauptverfasser: Ajeel, Raheem K., Zulkifli, Rozli, Sopian, K., Fayyadh, Saba N., Fazlizan, Ahmad, Ibrahim, Adnan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, flow and heat transfer characteristics of binary hybrid nanofluid (CuO / MgO-water) through new configuration channel, namely: the curved-corrugated channel, are evaluated numerically using the multi-phase mixture model. The binary hybrid nanofluid is experimentally prepared with average diameters of 40 nm and three volume fractions of nanoparticles of 1%,3%, and 5%. Measured thermophysical properties are employed to simulate the complex flow within the tested configurations of channel with presence of E-shaped baffles. Various geometric parameters such as gap ratio (GR = 0.2,0.3,0.4, and 0.5), blockage ratio (BR = 0.2,0.25,0.3, and 0.35), and pitch angle (β = 10°, 12.5°, and 15°) at different Reynolds number (8000–28,000) and volume fraction (φ) of CuO / MgO particles (0–5%) are considered to serve the purpose. The findings uncover that the binary hybrid nanofluid improves the thermophysical properties of the base fluid and thereby boost the thermal performance of the system. It is found that the thermal-hydraulic performance (THPF) of binary hybrid nanofluid enhances with increasing volume fraction, and this enhancement is close to 38% when Re = 28,000 and φ = 0.05. Regards the geometric parameters, THPF enhances by increasing the blockage ratio and decreasing the pitch angle while recording the best improvement at the particular gap ratio, i.e. 0.3. Binary hybrid nanofluid preparation and thermophysical properties measurement. [Display omitted] •A new model of curved channel is proposed and investigated numerically using binary hybrid nanofluid.•The thermal-hydraulic performance method and two-phase mixture model are used.•Thermophysical properties of CuO/MgO–water nanofluid is experimentally measured at different volume fractions.•Effects of volume fractions and geometric parameters on the thermal-hydraulic performance are investigated.•At a specific gap ratio, the high-volume fraction of hybrid nanofluid displays a higher THPF than the others.
ISSN:0032-5910
1873-328X
DOI:10.1016/j.powtec.2021.02.055