Mean-Field Backward Stochastic Differential Equations Driven by Fractional Brownian Motion

In this paper, we study a new class of equations called mean-field backward stochastic differential equations (BSDEs, for short) driven by fractional Brownian motion with Hurst parameter H > 1/2. First, the existence and uniqueness of this class of BSDEs are obtained. Second, a comparison theorem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2021-07, Vol.37 (7), p.1156-1170
Hauptverfasser: Shi, Yu Feng, Wen, Jia Qiang, Xiong, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study a new class of equations called mean-field backward stochastic differential equations (BSDEs, for short) driven by fractional Brownian motion with Hurst parameter H > 1/2. First, the existence and uniqueness of this class of BSDEs are obtained. Second, a comparison theorem of the solutions is established. Third, as an application, we connect this class of BSDEs with a nonlocal partial differential equation (PDE, for short), and derive a relationship between the fractional mean-field BSDEs and PDEs.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-021-0002-9