Mean-Field Backward Stochastic Differential Equations Driven by Fractional Brownian Motion
In this paper, we study a new class of equations called mean-field backward stochastic differential equations (BSDEs, for short) driven by fractional Brownian motion with Hurst parameter H > 1/2. First, the existence and uniqueness of this class of BSDEs are obtained. Second, a comparison theorem...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2021-07, Vol.37 (7), p.1156-1170 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study a new class of equations called mean-field backward stochastic differential equations (BSDEs, for short) driven by fractional Brownian motion with Hurst parameter
H
> 1/2. First, the existence and uniqueness of this class of BSDEs are obtained. Second, a comparison theorem of the solutions is established. Third, as an application, we connect this class of BSDEs with a nonlocal partial differential equation (PDE, for short), and derive a relationship between the fractional mean-field BSDEs and PDEs. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-021-0002-9 |