Using Predictions and Marginal Effects to Compare Groups in Regression Models for Binary Outcomes

Methods for group comparisons using predicted probabilities and marginal effects on probabilities are developed for regression models for binary outcomes. Unlike approaches based on the comparison of regression coefficients across groups, the methods we propose are unaffected by the scalar identific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sociological methods & research 2021-08, Vol.50 (3), p.1284-1320
Hauptverfasser: Long, J. Scott, Mustillo, Sarah A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1320
container_issue 3
container_start_page 1284
container_title Sociological methods & research
container_volume 50
creator Long, J. Scott
Mustillo, Sarah A.
description Methods for group comparisons using predicted probabilities and marginal effects on probabilities are developed for regression models for binary outcomes. Unlike approaches based on the comparison of regression coefficients across groups, the methods we propose are unaffected by the scalar identification of the coefficients and are expressed in the natural metric of the outcome probability. While we develop our approach using binary logit with two groups, we consider how our interpretive framework can be used with a broad class of regression models and can be extended to any number of groups.
doi_str_mv 10.1177/0049124118799374
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555592615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1305447</ericid><sage_id>10.1177_0049124118799374</sage_id><sourcerecordid>2555592615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-64b2a27eb5339f43058946c402db0ea6e60aa3010c2c791b91f3c5c57a65b7683</originalsourceid><addsrcrecordid>eNp1UE1Lw0AQXUTBWr17ERY8R_czmz1qaavSUhF7DpvNJqS02biTHPz3bokoCM5lDu9j3jyErim5o1Spe0KEpkxQmimtuRInaEKlZEnGtDhFkyOcHPFzdAGwI4QyRfgEmS00bY1fgysb2ze-BWzaEq9NqJvW7PG8qpztAfcez_yhM8HhZfBDB7hp8ZurgwOIKrz2pdsDrnzAj1EYPvFm6K0_OLhEZ5XZg7v63lO0XczfZ0_JarN8nj2sEss57ZNUFMww5QrJua4EJzLTIrWCsLIgzqQuJcZwQollVmlaaFpxK61UJpWFSjM-Rbejbxf8x-Cgz3d-CPEHyJmMo1lKZWSRkWWDBwiuyrvQHGLenJL8WGT-t8gouRklLjT2hz5_oTGjECriyYiDqd3v0X_9vgBqQHr5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555592615</pqid></control><display><type>article</type><title>Using Predictions and Marginal Effects to Compare Groups in Regression Models for Binary Outcomes</title><source>SAGE Complete</source><source>Sociological Abstracts</source><creator>Long, J. Scott ; Mustillo, Sarah A.</creator><creatorcontrib>Long, J. Scott ; Mustillo, Sarah A.</creatorcontrib><description>Methods for group comparisons using predicted probabilities and marginal effects on probabilities are developed for regression models for binary outcomes. Unlike approaches based on the comparison of regression coefficients across groups, the methods we propose are unaffected by the scalar identification of the coefficients and are expressed in the natural metric of the outcome probability. While we develop our approach using binary logit with two groups, we consider how our interpretive framework can be used with a broad class of regression models and can be extended to any number of groups.</description><identifier>ISSN: 0049-1241</identifier><identifier>EISSN: 1552-8294</identifier><identifier>DOI: 10.1177/0049124118799374</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Comparative Analysis ; Groups ; Prediction ; Probability ; Regression (Statistics)</subject><ispartof>Sociological methods &amp; research, 2021-08, Vol.50 (3), p.1284-1320</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-64b2a27eb5339f43058946c402db0ea6e60aa3010c2c791b91f3c5c57a65b7683</citedby><cites>FETCH-LOGICAL-c331t-64b2a27eb5339f43058946c402db0ea6e60aa3010c2c791b91f3c5c57a65b7683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0049124118799374$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0049124118799374$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,33773,43620,43621</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1305447$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Long, J. Scott</creatorcontrib><creatorcontrib>Mustillo, Sarah A.</creatorcontrib><title>Using Predictions and Marginal Effects to Compare Groups in Regression Models for Binary Outcomes</title><title>Sociological methods &amp; research</title><description>Methods for group comparisons using predicted probabilities and marginal effects on probabilities are developed for regression models for binary outcomes. Unlike approaches based on the comparison of regression coefficients across groups, the methods we propose are unaffected by the scalar identification of the coefficients and are expressed in the natural metric of the outcome probability. While we develop our approach using binary logit with two groups, we consider how our interpretive framework can be used with a broad class of regression models and can be extended to any number of groups.</description><subject>Comparative Analysis</subject><subject>Groups</subject><subject>Prediction</subject><subject>Probability</subject><subject>Regression (Statistics)</subject><issn>0049-1241</issn><issn>1552-8294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNp1UE1Lw0AQXUTBWr17ERY8R_czmz1qaavSUhF7DpvNJqS02biTHPz3bokoCM5lDu9j3jyErim5o1Spe0KEpkxQmimtuRInaEKlZEnGtDhFkyOcHPFzdAGwI4QyRfgEmS00bY1fgysb2ze-BWzaEq9NqJvW7PG8qpztAfcez_yhM8HhZfBDB7hp8ZurgwOIKrz2pdsDrnzAj1EYPvFm6K0_OLhEZ5XZg7v63lO0XczfZ0_JarN8nj2sEss57ZNUFMww5QrJua4EJzLTIrWCsLIgzqQuJcZwQollVmlaaFpxK61UJpWFSjM-Rbejbxf8x-Cgz3d-CPEHyJmMo1lKZWSRkWWDBwiuyrvQHGLenJL8WGT-t8gouRklLjT2hz5_oTGjECriyYiDqd3v0X_9vgBqQHr5</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Long, J. Scott</creator><creator>Mustillo, Sarah A.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>8BJ</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FQK</scope><scope>JBE</scope><scope>WZK</scope></search><sort><creationdate>202108</creationdate><title>Using Predictions and Marginal Effects to Compare Groups in Regression Models for Binary Outcomes</title><author>Long, J. Scott ; Mustillo, Sarah A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-64b2a27eb5339f43058946c402db0ea6e60aa3010c2c791b91f3c5c57a65b7683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Comparative Analysis</topic><topic>Groups</topic><topic>Prediction</topic><topic>Probability</topic><topic>Regression (Statistics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, J. Scott</creatorcontrib><creatorcontrib>Mustillo, Sarah A.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Sociological methods &amp; research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, J. Scott</au><au>Mustillo, Sarah A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1305447</ericid><atitle>Using Predictions and Marginal Effects to Compare Groups in Regression Models for Binary Outcomes</atitle><jtitle>Sociological methods &amp; research</jtitle><date>2021-08</date><risdate>2021</risdate><volume>50</volume><issue>3</issue><spage>1284</spage><epage>1320</epage><pages>1284-1320</pages><issn>0049-1241</issn><eissn>1552-8294</eissn><abstract>Methods for group comparisons using predicted probabilities and marginal effects on probabilities are developed for regression models for binary outcomes. Unlike approaches based on the comparison of regression coefficients across groups, the methods we propose are unaffected by the scalar identification of the coefficients and are expressed in the natural metric of the outcome probability. While we develop our approach using binary logit with two groups, we consider how our interpretive framework can be used with a broad class of regression models and can be extended to any number of groups.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/0049124118799374</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0049-1241
ispartof Sociological methods & research, 2021-08, Vol.50 (3), p.1284-1320
issn 0049-1241
1552-8294
language eng
recordid cdi_proquest_journals_2555592615
source SAGE Complete; Sociological Abstracts
subjects Comparative Analysis
Groups
Prediction
Probability
Regression (Statistics)
title Using Predictions and Marginal Effects to Compare Groups in Regression Models for Binary Outcomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A30%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Predictions%20and%20Marginal%20Effects%20to%20Compare%20Groups%20in%20Regression%20Models%20for%20Binary%20Outcomes&rft.jtitle=Sociological%20methods%20&%20research&rft.au=Long,%20J.%20Scott&rft.date=2021-08&rft.volume=50&rft.issue=3&rft.spage=1284&rft.epage=1320&rft.pages=1284-1320&rft.issn=0049-1241&rft.eissn=1552-8294&rft_id=info:doi/10.1177/0049124118799374&rft_dat=%3Cproquest_cross%3E2555592615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555592615&rft_id=info:pmid/&rft_ericid=EJ1305447&rft_sage_id=10.1177_0049124118799374&rfr_iscdi=true