Using Predictions and Marginal Effects to Compare Groups in Regression Models for Binary Outcomes
Methods for group comparisons using predicted probabilities and marginal effects on probabilities are developed for regression models for binary outcomes. Unlike approaches based on the comparison of regression coefficients across groups, the methods we propose are unaffected by the scalar identific...
Gespeichert in:
Veröffentlicht in: | Sociological methods & research 2021-08, Vol.50 (3), p.1284-1320 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1320 |
---|---|
container_issue | 3 |
container_start_page | 1284 |
container_title | Sociological methods & research |
container_volume | 50 |
creator | Long, J. Scott Mustillo, Sarah A. |
description | Methods for group comparisons using predicted probabilities and marginal effects on probabilities are developed for regression models for binary outcomes. Unlike approaches based on the comparison of regression coefficients across groups, the methods we propose are unaffected by the scalar identification of the coefficients and are expressed in the natural metric of the outcome probability. While we develop our approach using binary logit with two groups, we consider how our interpretive framework can be used with a broad class of regression models and can be extended to any number of groups. |
doi_str_mv | 10.1177/0049124118799374 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555592615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1305447</ericid><sage_id>10.1177_0049124118799374</sage_id><sourcerecordid>2555592615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-64b2a27eb5339f43058946c402db0ea6e60aa3010c2c791b91f3c5c57a65b7683</originalsourceid><addsrcrecordid>eNp1UE1Lw0AQXUTBWr17ERY8R_czmz1qaavSUhF7DpvNJqS02biTHPz3bokoCM5lDu9j3jyErim5o1Spe0KEpkxQmimtuRInaEKlZEnGtDhFkyOcHPFzdAGwI4QyRfgEmS00bY1fgysb2ze-BWzaEq9NqJvW7PG8qpztAfcez_yhM8HhZfBDB7hp8ZurgwOIKrz2pdsDrnzAj1EYPvFm6K0_OLhEZ5XZg7v63lO0XczfZ0_JarN8nj2sEss57ZNUFMww5QrJua4EJzLTIrWCsLIgzqQuJcZwQollVmlaaFpxK61UJpWFSjM-Rbejbxf8x-Cgz3d-CPEHyJmMo1lKZWSRkWWDBwiuyrvQHGLenJL8WGT-t8gouRklLjT2hz5_oTGjECriyYiDqd3v0X_9vgBqQHr5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555592615</pqid></control><display><type>article</type><title>Using Predictions and Marginal Effects to Compare Groups in Regression Models for Binary Outcomes</title><source>SAGE Complete</source><source>Sociological Abstracts</source><creator>Long, J. Scott ; Mustillo, Sarah A.</creator><creatorcontrib>Long, J. Scott ; Mustillo, Sarah A.</creatorcontrib><description>Methods for group comparisons using predicted probabilities and marginal effects on probabilities are developed for regression models for binary outcomes. Unlike approaches based on the comparison of regression coefficients across groups, the methods we propose are unaffected by the scalar identification of the coefficients and are expressed in the natural metric of the outcome probability. While we develop our approach using binary logit with two groups, we consider how our interpretive framework can be used with a broad class of regression models and can be extended to any number of groups.</description><identifier>ISSN: 0049-1241</identifier><identifier>EISSN: 1552-8294</identifier><identifier>DOI: 10.1177/0049124118799374</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Comparative Analysis ; Groups ; Prediction ; Probability ; Regression (Statistics)</subject><ispartof>Sociological methods & research, 2021-08, Vol.50 (3), p.1284-1320</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-64b2a27eb5339f43058946c402db0ea6e60aa3010c2c791b91f3c5c57a65b7683</citedby><cites>FETCH-LOGICAL-c331t-64b2a27eb5339f43058946c402db0ea6e60aa3010c2c791b91f3c5c57a65b7683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0049124118799374$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0049124118799374$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,33773,43620,43621</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1305447$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Long, J. Scott</creatorcontrib><creatorcontrib>Mustillo, Sarah A.</creatorcontrib><title>Using Predictions and Marginal Effects to Compare Groups in Regression Models for Binary Outcomes</title><title>Sociological methods & research</title><description>Methods for group comparisons using predicted probabilities and marginal effects on probabilities are developed for regression models for binary outcomes. Unlike approaches based on the comparison of regression coefficients across groups, the methods we propose are unaffected by the scalar identification of the coefficients and are expressed in the natural metric of the outcome probability. While we develop our approach using binary logit with two groups, we consider how our interpretive framework can be used with a broad class of regression models and can be extended to any number of groups.</description><subject>Comparative Analysis</subject><subject>Groups</subject><subject>Prediction</subject><subject>Probability</subject><subject>Regression (Statistics)</subject><issn>0049-1241</issn><issn>1552-8294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNp1UE1Lw0AQXUTBWr17ERY8R_czmz1qaavSUhF7DpvNJqS02biTHPz3bokoCM5lDu9j3jyErim5o1Spe0KEpkxQmimtuRInaEKlZEnGtDhFkyOcHPFzdAGwI4QyRfgEmS00bY1fgysb2ze-BWzaEq9NqJvW7PG8qpztAfcez_yhM8HhZfBDB7hp8ZurgwOIKrz2pdsDrnzAj1EYPvFm6K0_OLhEZ5XZg7v63lO0XczfZ0_JarN8nj2sEss57ZNUFMww5QrJua4EJzLTIrWCsLIgzqQuJcZwQollVmlaaFpxK61UJpWFSjM-Rbejbxf8x-Cgz3d-CPEHyJmMo1lKZWSRkWWDBwiuyrvQHGLenJL8WGT-t8gouRklLjT2hz5_oTGjECriyYiDqd3v0X_9vgBqQHr5</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Long, J. Scott</creator><creator>Mustillo, Sarah A.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>8BJ</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FQK</scope><scope>JBE</scope><scope>WZK</scope></search><sort><creationdate>202108</creationdate><title>Using Predictions and Marginal Effects to Compare Groups in Regression Models for Binary Outcomes</title><author>Long, J. Scott ; Mustillo, Sarah A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-64b2a27eb5339f43058946c402db0ea6e60aa3010c2c791b91f3c5c57a65b7683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Comparative Analysis</topic><topic>Groups</topic><topic>Prediction</topic><topic>Probability</topic><topic>Regression (Statistics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, J. Scott</creatorcontrib><creatorcontrib>Mustillo, Sarah A.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Sociological methods & research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, J. Scott</au><au>Mustillo, Sarah A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1305447</ericid><atitle>Using Predictions and Marginal Effects to Compare Groups in Regression Models for Binary Outcomes</atitle><jtitle>Sociological methods & research</jtitle><date>2021-08</date><risdate>2021</risdate><volume>50</volume><issue>3</issue><spage>1284</spage><epage>1320</epage><pages>1284-1320</pages><issn>0049-1241</issn><eissn>1552-8294</eissn><abstract>Methods for group comparisons using predicted probabilities and marginal effects on probabilities are developed for regression models for binary outcomes. Unlike approaches based on the comparison of regression coefficients across groups, the methods we propose are unaffected by the scalar identification of the coefficients and are expressed in the natural metric of the outcome probability. While we develop our approach using binary logit with two groups, we consider how our interpretive framework can be used with a broad class of regression models and can be extended to any number of groups.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/0049124118799374</doi><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0049-1241 |
ispartof | Sociological methods & research, 2021-08, Vol.50 (3), p.1284-1320 |
issn | 0049-1241 1552-8294 |
language | eng |
recordid | cdi_proquest_journals_2555592615 |
source | SAGE Complete; Sociological Abstracts |
subjects | Comparative Analysis Groups Prediction Probability Regression (Statistics) |
title | Using Predictions and Marginal Effects to Compare Groups in Regression Models for Binary Outcomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A30%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Predictions%20and%20Marginal%20Effects%20to%20Compare%20Groups%20in%20Regression%20Models%20for%20Binary%20Outcomes&rft.jtitle=Sociological%20methods%20&%20research&rft.au=Long,%20J.%20Scott&rft.date=2021-08&rft.volume=50&rft.issue=3&rft.spage=1284&rft.epage=1320&rft.pages=1284-1320&rft.issn=0049-1241&rft.eissn=1552-8294&rft_id=info:doi/10.1177/0049124118799374&rft_dat=%3Cproquest_cross%3E2555592615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555592615&rft_id=info:pmid/&rft_ericid=EJ1305447&rft_sage_id=10.1177_0049124118799374&rfr_iscdi=true |