Using Predictions and Marginal Effects to Compare Groups in Regression Models for Binary Outcomes

Methods for group comparisons using predicted probabilities and marginal effects on probabilities are developed for regression models for binary outcomes. Unlike approaches based on the comparison of regression coefficients across groups, the methods we propose are unaffected by the scalar identific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sociological methods & research 2021-08, Vol.50 (3), p.1284-1320
Hauptverfasser: Long, J. Scott, Mustillo, Sarah A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methods for group comparisons using predicted probabilities and marginal effects on probabilities are developed for regression models for binary outcomes. Unlike approaches based on the comparison of regression coefficients across groups, the methods we propose are unaffected by the scalar identification of the coefficients and are expressed in the natural metric of the outcome probability. While we develop our approach using binary logit with two groups, we consider how our interpretive framework can be used with a broad class of regression models and can be extended to any number of groups.
ISSN:0049-1241
1552-8294
DOI:10.1177/0049124118799374