On some symmetries of the base \( n \) expansion of \( 1/m \) : The Class Number connection

Suppose that \( m\equiv 1\mod 4 \) is a prime and that \( n\equiv 3\mod 4 \) is a primitive root modulo \( m \). In this paper we obtain a relation between the class number of the imaginary quadratic field \( \Q(\sqrt{-nm}) \) and the digits of the base \( n \) expansion of \( 1/m \). Secondly, if \...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Chakraborty, Kalyan, Krishnamoorthy, Krishnarjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose that \( m\equiv 1\mod 4 \) is a prime and that \( n\equiv 3\mod 4 \) is a primitive root modulo \( m \). In this paper we obtain a relation between the class number of the imaginary quadratic field \( \Q(\sqrt{-nm}) \) and the digits of the base \( n \) expansion of \( 1/m \). Secondly, if \( m\equiv 3\mod 4 \), we study some convoluted sums involving the base \( n \) digits of \( 1/m \) and arrive at certain congruence relations involving the class number of \( \Q(\sqrt{-m}) \) modulo certain primes \( p \) which properly divide \( n+1 \).
ISSN:2331-8422
DOI:10.48550/arxiv.2107.12123