On-Device Content Moderation
With the advent of internet, not safe for work(NSFW) content moderation is a major problem today. Since,smartphones are now part of daily life of billions of people,it becomes even more important to have a solution which coulddetect and suggest user about potential NSFW content present ontheir phone...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-07 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the advent of internet, not safe for work(NSFW) content moderation is a major problem today. Since,smartphones are now part of daily life of billions of people,it becomes even more important to have a solution which coulddetect and suggest user about potential NSFW content present ontheir phone. In this paper we present a novel on-device solutionfor detecting NSFW images. In addition to conventional porno-graphic content moderation, we have also included semi-nudecontent moderation as it is still NSFW in a large demography.We have curated a dataset comprising of three major categories,namely nude, semi-nude and safe images. We have created anensemble of object detector and classifier for filtering of nudeand semi-nude contents. The solution provides unsafe body partannotations along with identification of semi-nude images. Weextensively tested our proposed solution on several public datasetand also on our custom dataset. The model achieves F1 scoreof 0.91 with 95% precision and 88% recall on our customNSFW16k dataset and 0.92 MAP on NPDI dataset. Moreover itachieves average 0.002 false positive rate on a collection of safeimage open datasets. |
---|---|
ISSN: | 2331-8422 |