On some symmetries of the base \( n \) expansion of \( 1/m \) : Comments on Artin's Primitive root conjecture
Suppose \( m,n\geq 2 \) are co prime integers. We prove certain new symmetries of the base \( n \) representation of \( 1/m \), and in particular characterize the subgroup generated by \( n \) inside \( (\mathbb{Z}/m\mathbb{Z})^\times \). As an application we give a sufficient condition for a prime...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suppose \( m,n\geq 2 \) are co prime integers. We prove certain new symmetries of the base \( n \) representation of \( 1/m \), and in particular characterize the subgroup generated by \( n \) inside \( (\mathbb{Z}/m\mathbb{Z})^\times \). As an application we give a sufficient condition for a prime \( p \) such that a non square number \( n \) is a primitive root modulo \( p \). |
---|---|
ISSN: | 2331-8422 |