Accretion onto Stars in the Disks of Active Galactic Nuclei

Disks of gas accreting onto supermassive black holes are thought to power active galactic nuclei (AGN). Stars may form in gravitationally unstable regions of these disks, or may be captured from nuclear star clusters. Because of the dense gas environment, the evolution of these embedded stars can di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-07, Vol.916 (1), p.48
Hauptverfasser: Dittmann, Alexander J., Cantiello, Matteo, Jermyn, Adam S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Disks of gas accreting onto supermassive black holes are thought to power active galactic nuclei (AGN). Stars may form in gravitationally unstable regions of these disks, or may be captured from nuclear star clusters. Because of the dense gas environment, the evolution of these embedded stars can diverge dramatically from those in the interstellar medium. This work extends previous studies of stellar evolution in AGN disks by exploring a variety of ways in which accretion onto stars in AGN disks may differ from Bondi accretion. We find that tidal effects from the supermassive black hole significantly alter the evolution of stars in AGN disks, and that our results do not depend critically on assumptions about radiative feedback on the accretion stream. Thus, in addition to depending on the ambient density and sound speed, the fate of stars in AGN disks depends sensitively on the distance to and mass of the supermassive black hole. This affects the location in the disk in which stellar explosions occur, where compact remnants form and potentially merge to produce gravitational waves, and where different types of chemical enrichment take place.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ac042c