Metadiffusers for quasi-perfect and broadband sound diffusion

Sound diffusion refers to the ability of a surface to evenly scatter sound energy in both time and space. However, omni-directional radiation of sound, or perfect diffusion, can be impractical or difficult to reach under traditional means. This is due to the considerable size required, and the lack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-07, Vol.119 (4), Article 044101
Hauptverfasser: Ballestero, E., Jiménez, N., Groby, J.-P., Aygun, H., Dance, S., Romero-García, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sound diffusion refers to the ability of a surface to evenly scatter sound energy in both time and space. However, omni-directional radiation of sound, or perfect diffusion, can be impractical or difficult to reach under traditional means. This is due to the considerable size required, and the lack of tunability, of typical quarter-wavelength scattering strategies necessary for producing the required complexity of the surface acoustic impedance. As such, it can be a challenge to design sound diffusing structures that can display near perfect diffusion performance within slim dimensions. In this work, we propose a method for obtaining quasi-perfect and broadband sound diffusion coefficients using deep-subwavelength acoustic diffusers, i.e., metadiffusers. The relation among the geometry of the metasurface, the bandwidth, and the diffusion performance is analytically and numerically studied. For moderate bandwidths, around 1/3 of an octave, the method results in nearly perfect sound diffusion, while for a bandwidth of 2.5 octaves, a normalized diffusion coefficient of 0.8 was obtained using panels 1/30th thinner than traditional phase-grating designs. The ratio between the wavelength and the size of the unit cell was identified as a limitation of the performance. This work demonstrates the versatility and effectiveness of metadiffusers to generate diffuse reflections outperforming those of classical sound diffusers.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0053413