Comparison of CMIP6 and CMIP5 model performance in simulating historical precipitation and temperature in Bangladesh: a preliminary study

The relative performance of global climate models (GCMs) of phases 5 and 6 of the coupled model intercomparison project (CMIP5 and CMIP6, respectively) was assessed in this study based on their ability to simulate annual and seasonal mean rainfall and temperature over Bangladesh for the period 1977–...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied climatology 2021-08, Vol.145 (3-4), p.1385-1406
Hauptverfasser: Kamruzzaman, Mohammad, Shahid, Shamsuddin, Islam, ARM Towfiqul, Hwang, Syewoon, Cho, Jaepil, Zaman, Md. Asad Uz, Ahmed, Minhaz, Rahman, Md. Mizanur, Hossain, Md. Belal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relative performance of global climate models (GCMs) of phases 5 and 6 of the coupled model intercomparison project (CMIP5 and CMIP6, respectively) was assessed in this study based on their ability to simulate annual and seasonal mean rainfall and temperature over Bangladesh for the period 1977–2005. Multiple statistical metrics were used to measure the performance of the GCMs at 30 meteorological observation stations. Two robust multi-criteria decision analysis methods were used to integrate the results obtained using different metrics for an unbiased ranking of the GCMs. The results revealed MIROC5 as the most skillful among CMIP5 GCMs and ACCESS-CM2 among CMIP6 GCMs. Overall, CMIP6 MME showed a significant improvement in simulating rainfall and temperature over Bangladesh compared to CMIP5 MME. The highest improvements were found in simulating cold season (winter and post-monsoon) rainfall and temperature in higher elevated areas. The improvement was relatively more for rainfall than for temperature. The models could capture the interannual variability of annual and seasonal rainfall and temperature reliably, except for the winter rainfall. However, systematic wet and cold/warm biases still exist in CMIP6 models for Bangladesh. CMIP6 GCMs showed higher spatial correlations with observed data, but the higher difference in standard deviations and centered root mean square errors compared to CMIP5 GCMs indicates better performance in simulating geographical distribution but lower performance in simulating spatial variability of most of the climate variables except for minimum temperature at different timescales. In terms of Taylor skill score, the CMIP6 MME showed higher performance in simulating rainfall but lower performance in simulating temperature than CMIP5 MME for most of the timeframes. The findings of this study suggest that the added value of rainfall and temperature simulations in CMIP6 models is not consistent among the climate models used in this research. However, it sets a precedent for future research on climate change risk assessment for the scientific community.
ISSN:0177-798X
1434-4483
DOI:10.1007/s00704-021-03691-0