Application of SWAT Using Snow Data and Detecting Climate Change Impacts in the Mountainous Eastern Regions of Turkey
In recent years, the potential impacts of climate change on water resources and the hydrologic cycle have gained importance especially for snow-dominated mountainous basins. Within this scope, the Euphrates-Tigris Basin, a snow-fed transboundary river with several large dams, was selected to investi...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2021-07, Vol.13 (14), p.1982 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, the potential impacts of climate change on water resources and the hydrologic cycle have gained importance especially for snow-dominated mountainous basins. Within this scope, the Euphrates-Tigris Basin, a snow-fed transboundary river with several large dams, was selected to investigate the effects of changing climate on seasonal snow and runoff. In this study, two headwater basins of the Euphrates River, ranging in elevation between 1500–3500 m, were assigned and SWAT was employed as a hydrological modeling tool. Model calibration and validation were conducted in a stepwise manner for snow and runoff consecutively. For the snow routine, model parameters were adjusted using MODIS daily snow-covered area, achieving hit rates of more than 95% between MODIS and SWAT. Other model parameters were calibrated successively and later validated according to daily runoff, reaching a Nash-Sutcliffe efficiency of 0.64–0.82 in both basins. After the modeling stage, the focus was drawn to the impacts of climate change under two different climate scenarios (RCP4.5 and RCP8.5) in two 30-year projection periods (2041–2070 and 2071–2099). From the results, it is estimated that on average snow water equivalent decreases in the order of 30–39% and snow-covered days shorten by 37–43 days for the two basins until 2099. In terms of runoff, a slight reduction of at most 5% on average volume is projected but more notably, runoff center-time is expected to shift 1–2 weeks earlier by the end of the century. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w13141982 |