Existence of normalized ground states for the Sobolev critical Schrödinger equation with combined nonlinearities
We study the Sobolev critical Schrödinger equation with combined power nonlinearities - Δ u = λ u + | u | 2 N N - 2 - 2 u + μ | u | q - 2 u , x ∈ R N having prescribed mass ∫ R N | u | 2 d x = a 2 . For a L 2 -critical or L 2 -supercritical perturbation μ | u | q - 2 u , we prove existence of normal...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2021-10, Vol.60 (5), Article 169 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Sobolev critical Schrödinger equation with combined power nonlinearities
-
Δ
u
=
λ
u
+
|
u
|
2
N
N
-
2
-
2
u
+
μ
|
u
|
q
-
2
u
,
x
∈
R
N
having prescribed mass
∫
R
N
|
u
|
2
d
x
=
a
2
.
For a
L
2
-critical or
L
2
-supercritical perturbation
μ
|
u
|
q
-
2
u
, we prove existence of normalized ground states, by introducing the Sobolev subcritical approximation method to mass constrained problem. Our result settles a question raised by N. Soave [
22
]. Meanwhile, the Sobolev subcritical problem is treated again by using the Pohožaev constraint, Schwartz symmetrization rearrangements and various scaling transformations. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-021-02020-7 |