Existence of normalized ground states for the Sobolev critical Schrödinger equation with combined nonlinearities

We study the Sobolev critical Schrödinger equation with combined power nonlinearities - Δ u = λ u + | u | 2 N N - 2 - 2 u + μ | u | q - 2 u , x ∈ R N having prescribed mass ∫ R N | u | 2 d x = a 2 . For a L 2 -critical or L 2 -supercritical perturbation μ | u | q - 2 u , we prove existence of normal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2021-10, Vol.60 (5), Article 169
1. Verfasser: Li, Xinfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the Sobolev critical Schrödinger equation with combined power nonlinearities - Δ u = λ u + | u | 2 N N - 2 - 2 u + μ | u | q - 2 u , x ∈ R N having prescribed mass ∫ R N | u | 2 d x = a 2 . For a L 2 -critical or L 2 -supercritical perturbation μ | u | q - 2 u , we prove existence of normalized ground states, by introducing the Sobolev subcritical approximation method to mass constrained problem. Our result settles a question raised by N. Soave [ 22 ]. Meanwhile, the Sobolev subcritical problem is treated again by using the Pohožaev constraint, Schwartz symmetrization rearrangements and various scaling transformations.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-021-02020-7