Canonical Correlations and Nonlinear Dependencies

Canonical correlation analysis (CCA) is the default method for investigating the linear dependence structure between two random vectors, but it might not detect nonlinear dependencies. This paper models the nonlinear dependencies between two random vectors by the perturbed independence distribution,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2021-07, Vol.13 (7), p.1308
1. Verfasser: Loperfido, Nicola Maria Rinaldo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Canonical correlation analysis (CCA) is the default method for investigating the linear dependence structure between two random vectors, but it might not detect nonlinear dependencies. This paper models the nonlinear dependencies between two random vectors by the perturbed independence distribution, a multivariate semiparametric model where CCA provides an insight into their nonlinear dependence structure. The paper also investigates some of its probabilistic and inferential properties, including marginal and conditional distributions, nonlinear transformations, maximum likelihood estimation and independence testing. Perturbed independence distributions are closely related to skew-symmetric ones.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym13071308