Simulation and Experiment of Gas-Solid Flow in a Safflower Sorting Device Based on the CFD-DEM Coupling Method

To study the movement characteristics and separation mechanism of safflower petals and their impurities under the action of airflow and lower the impurity rate in the cleaning operation process, integration of computational fluid dynamics (CFD) and discrete element method (DEM) codes was performed t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2021-07, Vol.9 (7), p.1239
Hauptverfasser: Hu, Zhizheng, Zeng, Haifeng, Ge, Yun, Wang, Wendong, Wang, Jiangkun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To study the movement characteristics and separation mechanism of safflower petals and their impurities under the action of airflow and lower the impurity rate in the cleaning operation process, integration of computational fluid dynamics (CFD) and discrete element method (DEM) codes was performed to study the motion and sorting behavior of impurity particles and safflower petals under different airflow inclination angles, dust removal angles and inlet airflow velocities by establishing a true particle model. In this model, the discrete particle phase was applied by the DEM software, and the continuum gas phase was described by the ANSYS Fluent software. The Box-Behnken experimental design with three factors and three levels was performed, and parameters such as inlet airflow velocity, airflow inclined angle, and dust remover angle were selected as independent variables that would influence the cleaning impurity rate and the cleaning loss rate. A mathematical model was established, and then the effects of various parameters and their interactions were analyzed. The test results show that the cleaning effect is best when the inlet airflow velocity is 7 m/s, the airflow inclined angle is 0°, and the dust remover angle is 25°. Confirmatory tests showed that the average cleaning impurity rate and cleaning loss rate were 0.69% and 2.75%, respectively, which dropped significantly compared with those from previous optimization. An experimental device was designed and set up; the experimental results were consistent with the simulation results, indicating that studying the physical behavior of safflower petals-impurity separation in the airflow field by using the DEM-CFD coupling method is reliable. This result provides a basis for follow-up studies of separation and cleaning devices for lightweight materials such as safflower petals.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr9071239