Successful Pass Schedule Design in Open-Die Forging Using Double Deep Q-Learning

In order to not only produce an open-die forged part with the desired final geometry but to also maintain economic production, precise process planning is necessary. However, due to the incremental forming of the billet, often with several hundred strokes, the process design is arbitrarily complicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2021-07, Vol.9 (7), p.1084
Hauptverfasser: Reinisch, Niklas, Rudolph, Fridtjof, Günther, Stefan, Bailly, David, Hirt, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to not only produce an open-die forged part with the desired final geometry but to also maintain economic production, precise process planning is necessary. However, due to the incremental forming of the billet, often with several hundred strokes, the process design is arbitrarily complicated and, even today, often only based on experience or simple mathematical models describing the geometry development. Hence, in this paper, fast process models were merged with a double deep Q-learning algorithm to enable a pass schedule design including multi-objective optimization. The presented implementation of a double deep Q-learning algorithm was successfully trained on an industrial-scale forging process and converged stably against high reward values. The generated pass schedules reliably produced the desired final ingot geometry, utilized the available press force well without exceeding plant limits, and, at the same time, minimized the number of passes. Finally, a forging experiment was performed at the institute of metal forming to validate the generated results. Overall, a proof of concept for the pass schedule design in open-die forging via double deep Q-learning was achieved which opens various starting points for future work.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr9071084